• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fingerprinting in Style: Detecting Browser ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Fingerprinting in Style: Detecting Browser Extensions via Injected Style Sheets
Author(s) :
Laperdrix, Pierre [Auteur]
Self-adaptation for distributed services and large software systems [SPIRALS]
Starov, Oleksii [Auteur]
Palo Alto Networks
Chen, Quan [Auteur]
Kapravelos, Alexandros [Auteur]
Nikiforakis, Nick [Auteur]
Department of Computer Science [Stonybrook - NY]
Conference title :
30th USENIX Security Symposium
City :
Virtual
Country :
France
Start date of the conference :
2021-08-11
HAL domain(s) :
Informatique [cs]/Web
English abstract : [en]
Browser extensions enhance the web experience and have seen great adoption from users in the past decade. At the same time, past research has shown that online trackers can use various techniques to infer the presence of ...
Show more >
Browser extensions enhance the web experience and have seen great adoption from users in the past decade. At the same time, past research has shown that online trackers can use various techniques to infer the presence of installed extensions and abuse them to track users as well as uncover sensitive information about them. In this work we present a novel extension-fingerprinting vector showing how style modifications from browser extensions can be abused to identify installed extensions. We propose a pipeline that analyzes extensions both statically and dynamically and pinpoints their injected style sheets. Based on these, we craft a set of triggers that uniquely identify browser extensions from the context of the visited page. We analyzed 116K extensions from Chrome's Web Store and report that 6,645 of them inject style sheets on any website that users visit. Our pipeline has created triggers that uniquely identify 4,446 of these extensions, 1,074 (24%) of which could not be fingerprinted with previous techniques. Given the power of this new extension-fingerprinting vector, we propose specific countermeasures against style fingerprinting that have minimal impact on the overall user experience.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03152176/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03152176/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03152176/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017