• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On an interval prediction of COVID-19 ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1016/j.arcontrol.2021.01.006
Title :
On an interval prediction of COVID-19 development based on a SEIR epidemic model
Author(s) :
Efimov, Denis [Auteur] refId
Finite-time control and estimation for distributed systems [VALSE]
Ushirobira, Rosane [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Journal title :
Annual Reviews in Control
Publisher :
Elsevier
Publication date :
2021
ISSN :
1367-5788
English keyword(s) :
COVID-19
Epidemic model
Parameter identification
Interval predictor
HAL domain(s) :
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
In this paper, a new version of the well-known epidemic mathematical SEIR model is used to analyze the pandemic course of COVID-19 in eight different countries. One of the proposed model’s improvements is to reflect the ...
Show more >
In this paper, a new version of the well-known epidemic mathematical SEIR model is used to analyze the pandemic course of COVID-19 in eight different countries. One of the proposed model’s improvements is to reflect the societal feedback on the disease and confinement features. The SEIR model parameters are allowed to be time-varying, and the ranges of their values are identified by using publicly available data for France, Italy, Spain, Germany, Brazil, Russia, New York State (US), and China. The identi- fied model is then applied to predict the SARS-CoV-2 virus propagation under various conditions of confinement. For this purpose, an interval predictor is designed, allowing variations and uncertainties in the model parameters to be taken into account. The code and the utilized data are available on Github.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-03122861/document
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.arcontrol.2021.01.006
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.arcontrol.2021.01.006
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03122861/document
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.arcontrol.2021.01.006
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.arcontrol.2021.01.006
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03122861/document
  • Open access
  • Access the document
Thumbnail
  • https://doi.org/10.1016/j.arcontrol.2021.01.006
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017