• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Échange de bruit corrélé pour le calcul ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...)
Title :
Échange de bruit corrélé pour le calcul distribué de moyenne avec garanties de confidentialité différentielle
Author(s) :
Sabater, César [Auteur]
Machine Learning in Information Networks [MAGNET]
Bellet, Aurelien [Auteur] refId
Machine Learning in Information Networks [MAGNET]
Ramon, Jan [Auteur] refId
Machine Learning in Information Networks [MAGNET]
Conference title :
Conférence sur l'Apprentissage Automatique 2020
City :
Vannes (Virtual)
Country :
France
Start date of the conference :
2020-06-23
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
The amount of personal data collected in our everyday interactions with connected devices offers great opportunities for innovative services fueled by machine learning, as well as raises serious concerns for the privacy ...
Show more >
The amount of personal data collected in our everyday interactions with connected devices offers great opportunities for innovative services fueled by machine learning, as well as raises serious concerns for the privacy of individuals. In this paper, we propose a differentially private protocol allowing a large set of users to compute the average of their local values. In contrast to existing work, our protocol does not rely on a third party or costly cryptographic primitives: we use simple pairwise exchanges of correlated Gaussian noise along the edges of a network graph. We analyze the differential privacy guarantees of our protocol and the role of the correlated noise, and show that we can match the accuracy of the trusted curator model. Furthermore, we design a verification procedure based on additively homomorphic commitments which offers protection against malicious users joining the service with the goal of manipulating the outcome of the algorithm.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Apprentissage automatique décentralisé et personnalisé sous contraintes
Apprentissage distribué, personnalisé, préservant la privacité pour le traitement de la parole
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • http://arxiv.org/pdf/2006.07218
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017