• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

metric-learn: Metric Learning Algorithms in Python
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
Title :
metric-learn: Metric Learning Algorithms in Python
Author(s) :
De Vazelhes, William [Auteur]
Carey, Cj [Auteur]
Google LLC
Tang, Yuan [Auteur]
Ant Group
Vauquier, Nathalie [Auteur]
Machine Learning in Information Networks [MAGNET]
Bellet, Aurelien [Auteur] refId
Machine Learning in Information Networks [MAGNET]
Journal title :
Journal of Machine Learning Research
Pages :
1-6
Publisher :
Microtome Publishing
Publication date :
2020
ISSN :
1532-4435
English keyword(s) :
machine learning
python
metric learning
scikit-learn
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
Statistiques [stat]/Machine Learning [stat.ML]
Informatique [cs]/Génie logiciel [cs.SE]
English abstract : [en]
metric-learn is an open source Python package implementing supervised and weaklysupervised distance metric learning algorithms. As part of scikit-learn-contrib, it provides a unified interface compatible with scikit-learn ...
Show more >
metric-learn is an open source Python package implementing supervised and weaklysupervised distance metric learning algorithms. As part of scikit-learn-contrib, it provides a unified interface compatible with scikit-learn which allows to easily perform cross-validation, model selection, and pipelining with other machine learning estimators. metric-learn is thoroughly tested and available on PyPi under the MIT license.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-03100076/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03100076/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03100076/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03100076/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017