• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fully Decentralized Joint Learning of ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Fully Decentralized Joint Learning of Personalized Models and Collaboration Graphs
Author(s) :
Zantedeschi, Valentina [Auteur]
Bellet, Aurelien [Auteur] refId
Machine Learning in Information Networks [MAGNET]
Tommasi, Marc [Auteur]
Machine Learning in Information Networks [MAGNET]
Conference title :
AISTATS 2020 - The 23rd International Conference on Artificial Intelligence and Statistics
City :
Palerme / Virtual
Country :
Italie
Start date of the conference :
2020-08-26
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
We consider the fully decentralized machine learning scenario where many users with personal datasets collaborate to learn models through local peer-to-peer exchanges, without a central coordinator. We propose to train ...
Show more >
We consider the fully decentralized machine learning scenario where many users with personal datasets collaborate to learn models through local peer-to-peer exchanges, without a central coordinator. We propose to train personalized models that leverage a collaboration graph describing the relationships between user personal tasks, which we learn jointly with the models. Our fully decentralized optimization procedure alternates between training nonlinear models given the graph in a greedy boosting manner, and updating the collaboration graph (with controlled sparsity) given the models. Throughout the process, users exchange messages only with a small number of peers (their direct neighbors when updating the models, and a few random users when updating the graph), ensuring that the procedure naturally scales with the number of users. Overall, our approach is communication-efficient and avoids exchanging personal data. We provide an extensive analysis of the convergence rate, memory and communication complexity of our approach, and demonstrate its benefits compared to competing techniques on synthetic and real datasets.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Apprentissage automatique décentralisé et personnalisé sous contraintes
Apprendre avec des vues interactionnelles
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-03100057/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03100057/file/aistats20_graph_supp.pdf
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03100057/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03100057/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017