• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning Fair Scoring Functions: Bipartite ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Permalink :
http://hdl.handle.net/20.500.12210/57179
Title :
Learning Fair Scoring Functions: Bipartite Ranking under ROC-based Fairness Constraints
Author(s) :
Vogel, Robin [Auteur]
Laboratoire Traitement et Communication de l'Information [LTCI]
Bellet, Aurelien [Auteur] refId
Machine Learning in Information Networks [MAGNET]
Clémençon, Stéphan [Auteur]
Laboratoire Traitement et Communication de l'Information [LTCI]
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
Many applications of AI, ranging from credit lending to medical diagnosis support through recidivism prediction, involve scoring individuals using a learned function of their attributes. These predictive risk scores are ...
Show more >
Many applications of AI, ranging from credit lending to medical diagnosis support through recidivism prediction, involve scoring individuals using a learned function of their attributes. These predictive risk scores are then used to take decisions based on whether the score exceeds a certain threshold, which may vary depending on the context. The level of delegation granted to such systems will heavily depend on how questions of fairness can be answered. In this paper, we study fairness for the problem of learning scoring functions from binary labeled data, a standard learning task known as bipartite ranking. We argue that the functional nature of the ROC curve, the gold standard measure of ranking performance in this context, leads to several ways of formulating fairness constraints. We introduce general classes of fairness definitions based on the AUC and on ROC curves, and establish generalization bounds for scoring functions learned under such constraints. Beyond the theoretical formulation and results, we design practical learning algorithms and illustrate our approach with numerical experiments on real and synthetic data.Show less >
Language :
Anglais
Comment :
33 pages, 11 figures, 5 tables
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Submission date :
2021-11-13T03:00:30Z
Files
Thumbnail
  • https://hal.inria.fr/hal-03100014/document
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/2002.08159
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017