Some fast algorithms multiplying a matrix ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Some fast algorithms multiplying a matrix by its adjoint
Auteur(s) :
Dumas, Jean-Guillaume [Auteur]
Calcul Algébrique et Symbolique, Sécurité, Systèmes Complexes, Codes et Cryptologie [CASC]
Pernet, Clément [Auteur]
Calcul Algébrique et Symbolique, Sécurité, Systèmes Complexes, Codes et Cryptologie [CASC]
Sedoglavic, Alexandre [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Calcul Algébrique et Symbolique, Sécurité, Systèmes Complexes, Codes et Cryptologie [CASC]
Pernet, Clément [Auteur]
Calcul Algébrique et Symbolique, Sécurité, Systèmes Complexes, Codes et Cryptologie [CASC]
Sedoglavic, Alexandre [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la revue :
Journal of Symbolic Computation
Pagination :
285-315
Éditeur :
Elsevier
Date de publication :
2023-03
ISSN :
0747-7171
Discipline(s) HAL :
Informatique [cs]/Calcul formel [cs.SC]
Résumé en anglais : [en]
We present a non-commutative algorithm for the multiplication of a 2 × 2 block-matrix by its adjoint, defined by a matrix ring anti-homomorphism. This algorithm uses 5 block products (3 recursive calls and 2 general ...
Lire la suite >We present a non-commutative algorithm for the multiplication of a 2 × 2 block-matrix by its adjoint, defined by a matrix ring anti-homomorphism. This algorithm uses 5 block products (3 recursive calls and 2 general products)over C or in positive characteristic. The resulting algorithm for arbitrary dimensions is a reduction of multiplication of a matrix by its adjoint to general matrix product, improving by a constant factor previously known reductions. We prove also that there is no algorithm derived from bilinear forms using only four products and the adjoint of one of them. Second we give novel dedicated algorithms for the complex field and the quaternions to alternatively compute the multiplication taking advantage of the structure of the matrix-polynomial arithmetic involved. We then analyze the respective ranges of predominance of the two strategies. Finally we propose schedules with low memory footprint that support a fast and memory efficient practical implementation over a prime field.Lire moins >
Lire la suite >We present a non-commutative algorithm for the multiplication of a 2 × 2 block-matrix by its adjoint, defined by a matrix ring anti-homomorphism. This algorithm uses 5 block products (3 recursive calls and 2 general products)over C or in positive characteristic. The resulting algorithm for arbitrary dimensions is a reduction of multiplication of a matrix by its adjoint to general matrix product, improving by a constant factor previously known reductions. We prove also that there is no algorithm derived from bilinear forms using only four products and the adjoint of one of them. Second we give novel dedicated algorithms for the complex field and the quaternions to alternatively compute the multiplication taking advantage of the structure of the matrix-polynomial arithmetic involved. We then analyze the respective ranges of predominance of the two strategies. Finally we propose schedules with low memory footprint that support a fast and memory efficient practical implementation over a prime field.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03095393/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/2101.01025
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03095393/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03095393/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- aat_adjoint.pdf
- Accès libre
- Accéder au document
- 2101.01025
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- aat_adjoint.pdf
- Accès libre
- Accéder au document