• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
  •   LillOA Home
  • Liste des unités
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low-complexity feature extraction unit for ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
DOI :
10.1109/ICECS.2018.8617967
Title :
Low-complexity feature extraction unit for “Wake-on-Feature” speech processing
Author(s) :
Lecoq, Simon [Auteur]
Institut Supérieur de l'Electronique et du Numérique - Lille [ISEN-Lille]
Le Bellego, Jean [Auteur]
Institut Supérieur de l'Electronique et du Numérique - Lille [ISEN-Lille]
Gonzalez, Angel [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Larras, Benoit [Auteur]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Frappé, Antoine [Auteur]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Conference title :
2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS)
City :
Bordeaux
Country :
France
Start date of the conference :
2018-12-09
Publisher :
IEEE
Publication date :
2018
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
In the context of energy-constrained automatic speech recognition, a modeling and simulation tool is presented to evaluate the hardware complexity of a feature extraction unit. The objective is to evaluate the minimal ...
Show more >
In the context of energy-constrained automatic speech recognition, a modeling and simulation tool is presented to evaluate the hardware complexity of a feature extraction unit. The objective is to evaluate the minimal amount of features necessary for voice-activity detection, considering limited hardware resources. The obtained features are fed into a classification engine to evaluate the ability to differentiate human voice from background noise. While keeping a detection accuracy of passwords from a standard data-set at 90%, the study shows that the parameters of the feature extraction components, such as ADC resolution or energy quantization resolution, can be reduced to 8 bits and 6 bits, respectively, considering 8 frequency bands, in order to allow hardware-efficient implementations.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017