Low-complexity feature extraction unit for ...
Type de document :
Communication dans un congrès avec actes
Titre :
Low-complexity feature extraction unit for “Wake-on-Feature” speech processing
Auteur(s) :
Lecoq, Simon [Auteur]
Institut Supérieur de l'Electronique et du Numérique - Lille [ISEN-Lille]
Le Bellego, Jean [Auteur]
Institut Supérieur de l'Electronique et du Numérique - Lille [ISEN-Lille]
Gonzalez, Angel [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Larras, Benoit [Auteur]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Frappe, Antoine [Auteur]
Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut Supérieur de l'Electronique et du Numérique - Lille [ISEN-Lille]
Le Bellego, Jean [Auteur]
Institut Supérieur de l'Electronique et du Numérique - Lille [ISEN-Lille]
Gonzalez, Angel [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Larras, Benoit [Auteur]

Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Frappe, Antoine [Auteur]

Microélectronique Silicium - IEMN [MICROELEC SI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la manifestation scientifique :
2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS)
Ville :
Bordeaux
Pays :
France
Date de début de la manifestation scientifique :
2018-12-09
Éditeur :
IEEE
Date de publication :
2018
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
In the context of energy-constrained automatic speech recognition, a modeling and simulation tool is presented to evaluate the hardware complexity of a feature extraction unit. The objective is to evaluate the minimal ...
Lire la suite >In the context of energy-constrained automatic speech recognition, a modeling and simulation tool is presented to evaluate the hardware complexity of a feature extraction unit. The objective is to evaluate the minimal amount of features necessary for voice-activity detection, considering limited hardware resources. The obtained features are fed into a classification engine to evaluate the ability to differentiate human voice from background noise. While keeping a detection accuracy of passwords from a standard data-set at 90%, the study shows that the parameters of the feature extraction components, such as ADC resolution or energy quantization resolution, can be reduced to 8 bits and 6 bits, respectively, considering 8 frequency bands, in order to allow hardware-efficient implementations.Lire moins >
Lire la suite >In the context of energy-constrained automatic speech recognition, a modeling and simulation tool is presented to evaluate the hardware complexity of a feature extraction unit. The objective is to evaluate the minimal amount of features necessary for voice-activity detection, considering limited hardware resources. The obtained features are fed into a classification engine to evaluate the ability to differentiate human voice from background noise. While keeping a detection accuracy of passwords from a standard data-set at 90%, the study shows that the parameters of the feature extraction components, such as ADC resolution or energy quantization resolution, can be reduced to 8 bits and 6 bits, respectively, considering 8 frequency bands, in order to allow hardware-efficient implementations.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :