Intumescent polypropylene: Reaction to ...
Document type :
Article dans une revue scientifique
Permalink :
Title :
Intumescent polypropylene: Reaction to fire and mechanistic aspects
Author(s) :
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Sarazin, Johan [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bensabath, Tsilla [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Samyn, Fabienne [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Sarazin, Johan [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bensabath, Tsilla [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Samyn, Fabienne [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Fire Safety Journal
Abbreviated title :
Fire Safety Journal
Volume number :
105
Pages :
261-269
Publisher :
Elsevier BV
Publication date :
2019-03-19
ISSN :
0379-7112
English keyword(s) :
Intumescence
polypropylene
kinetic analysis
heat transfer
polypropylene
kinetic analysis
heat transfer
HAL domain(s) :
Chimie/Polymères
Chimie/Matériaux
Chimie/Matériaux
English abstract : [en]
The concept of intumescence was applied to make flame retarded polypropylene (PP). This paper examines two types of intumescence in PP based on expandable graphite (EG, physical expansion) and on modified ammonium polyphosphate ...
Show more >The concept of intumescence was applied to make flame retarded polypropylene (PP). This paper examines two types of intumescence in PP based on expandable graphite (EG, physical expansion) and on modified ammonium polyphosphate (AP760, chemical expansion). Reaction to fire of PP containing EG and AP760 was first evaluated by cone calorimetry. The incorporation of intumescent additives at relatively low loading (10 wt%) in PP permits the reduction by 70% of peak of heat release rate (pHRR). The mode of action occurs via the formation of an expanded carbonaceous layer in all cases. The protective coating acts mainly as heat barrier in the case of the formulations containing AP760 or as heat dissipater with EG. The incorporation of small amount of EG in PP-AP760 modifies heat transfer in the coating creating a strong anisotropy. Upon expansion, graphite worms align normal to the surface increasing the transverse heat conductivity (lower efficiency of the heat barrier) and hence, decreasing the fire performance (decrease by only 30% of pHRR). Kinetic analysis was then performed to quantify the thermal stability of the intumescent systems. It reveals that the intumescent additives do not modify the reactional scheme of the PP thermal decomposition but they increase slightly the thermal stability of the intumescent systems. For all materials, the decomposition model follows a reactional scheme at two successive reactions. This model was determined in dynamic conditions (conditions of thermogravimetry with linear heating rates) but it is able to simulate the decomposition of the materials in isothermal conditions (excellent agreement between the simulated and experimental curves).Show less >
Show more >The concept of intumescence was applied to make flame retarded polypropylene (PP). This paper examines two types of intumescence in PP based on expandable graphite (EG, physical expansion) and on modified ammonium polyphosphate (AP760, chemical expansion). Reaction to fire of PP containing EG and AP760 was first evaluated by cone calorimetry. The incorporation of intumescent additives at relatively low loading (10 wt%) in PP permits the reduction by 70% of peak of heat release rate (pHRR). The mode of action occurs via the formation of an expanded carbonaceous layer in all cases. The protective coating acts mainly as heat barrier in the case of the formulations containing AP760 or as heat dissipater with EG. The incorporation of small amount of EG in PP-AP760 modifies heat transfer in the coating creating a strong anisotropy. Upon expansion, graphite worms align normal to the surface increasing the transverse heat conductivity (lower efficiency of the heat barrier) and hence, decreasing the fire performance (decrease by only 30% of pHRR). Kinetic analysis was then performed to quantify the thermal stability of the intumescent systems. It reveals that the intumescent additives do not modify the reactional scheme of the PP thermal decomposition but they increase slightly the thermal stability of the intumescent systems. For all materials, the decomposition model follows a reactional scheme at two successive reactions. This model was determined in dynamic conditions (conditions of thermogravimetry with linear heating rates) but it is able to simulate the decomposition of the materials in isothermal conditions (excellent agreement between the simulated and experimental curves).Show less >
Language :
Anglais
Peer reviewed article :
Non
Audience :
Internationale
Popular science :
Non
European Project :
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2019-04-02T18:55:53Z
2021-10-15T08:46:02Z
2021-10-15T08:46:02Z
Files
- FSJ 2018 - Intumescent PP (revised) v2.pdf
- Version soumise (preprint)
- Open access
- Access the document