A Trustful Monad for Axiomatic Reasoning ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
A Trustful Monad for Axiomatic Reasoning with Probability and Nondeterminism
Auteur(s) :
Affeldt, Reynald [Auteur]
National Institute of Advanced Industrial Science and Technology [AIST]
Garrigue, Jacques [Auteur]
Nagoya University
Nowak, David [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Saikawa, Takafumi [Auteur]
Nagoya University
National Institute of Advanced Industrial Science and Technology [AIST]
Garrigue, Jacques [Auteur]
Nagoya University
Nowak, David [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Saikawa, Takafumi [Auteur]
Nagoya University
Titre de la revue :
Journal of Functional Programming
Éditeur :
Cambridge University Press (CUP)
Date de publication :
2021-07-15
ISSN :
0956-7968
Discipline(s) HAL :
Informatique [cs]/Logique en informatique [cs.LO]
Résumé en anglais : [en]
The algebraic properties of the combination of probabilistic choice and nondeterministic choice have long been a research topic in program semantics. This paper explains a formalization in the Coq proof assistant of a monad ...
Lire la suite >The algebraic properties of the combination of probabilistic choice and nondeterministic choice have long been a research topic in program semantics. This paper explains a formalization in the Coq proof assistant of a monad equipped with both choices: the geometrically convex monad. This formalization has an immediate application: it provides a model for a monad that implements a non-trivial interface which allows for proofs by equational reasoning using probabilistic and nondeterministic effects. We explain the technical choices we made to go from the literature to a complete Coq formalization, from which we identify reusable theories about mathematical structures such as convex spaces and concrete categories, and that we integrate in a framework for monadic equational reasoning.Lire moins >
Lire la suite >The algebraic properties of the combination of probabilistic choice and nondeterministic choice have long been a research topic in program semantics. This paper explains a formalization in the Coq proof assistant of a monad equipped with both choices: the geometrically convex monad. This formalization has an immediate application: it provides a model for a monad that implements a non-trivial interface which allows for proofs by equational reasoning using probabilistic and nondeterministic effects. We explain the technical choices we made to go from the literature to a complete Coq formalization, from which we identify reusable theories about mathematical structures such as convex spaces and concrete categories, and that we integrate in a framework for monadic equational reasoning.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
28 pages, submitted
Collections :
Source :
Fichiers
- http://arxiv.org/pdf/2003.09993
- Accès libre
- Accéder au document
- 2003.09993
- Accès libre
- Accéder au document