• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interpretable privacy with optimizable utility
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Interpretable privacy with optimizable utility
Author(s) :
Ramon, Jan [Auteur] refId
Machine Learning in Information Networks [MAGNET]
Basu, Moitree [Auteur]
Machine Learning in Information Networks [MAGNET]
Conference title :
ECML/PKDD 2020 - Workshop on eXplainable Knowledge Discovery in Data mining
City :
Ghent / Virtual
Country :
Belgique
Start date of the conference :
2020-09-14
English keyword(s) :
Privacy
Explainability
Constraint optimization
HAL domain(s) :
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Théorie de l'information [cs.IT]
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
In this position paper, we discuss the problem of specifying privacy requirements for machine learning based systems, in an inter-pretable yet operational way. Explaining privacy-improving technology is a challenging ...
Show more >
In this position paper, we discuss the problem of specifying privacy requirements for machine learning based systems, in an inter-pretable yet operational way. Explaining privacy-improving technology is a challenging problem, especially when the goal is to construct a system which at the same time is interpretable and has a high performance. In order to address this challenge, we propose to specify privacy requirements as constraints, leaving several options for the concrete implementation of the system open, followed by a constraint optimization approach to achieve an efficient implementation also, next to the interpretable privacy guarantees.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-02950994/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-02950994/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-02950994/document
  • Open access
  • Access the document
Thumbnail
  • document
  • Open access
  • Access the document
Thumbnail
  • ipcp.pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017