Multi-objective optimization using Deep ...
Type de document :
Communication dans un congrès avec actes
DOI :
Titre :
Multi-objective optimization using Deep Gaussian Processes: Application to Aerospace Vehicle Design
Auteur(s) :
Hebbal, Ali [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Brevault, Loïc [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Balesdent, Mathieu [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Talbi, El-Ghazali [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Melab, Nouredine [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Brevault, Loïc [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Balesdent, Mathieu [Auteur]
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
Talbi, El-Ghazali [Auteur]

Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Melab, Nouredine [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
AIAA Scitech 2019 Forum, 2019
Ville :
SAN DIEGO
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2019-01-07
Titre de l’ouvrage :
AIAA Scitech 2019 Forum, 2019
Mot(s)-clé(s) en anglais :
AEROSPACE VEHICLES
AVIATION
CONSTRAINED OPTIMIZATION
COSTS
FUNCTION EVALUATION
GAUSSIAN DISTRIBUTION
GAUSSIAN NOISE (ELECTRONIC)
VEHICLES
AVIATION
CONSTRAINED OPTIMIZATION
COSTS
FUNCTION EVALUATION
GAUSSIAN DISTRIBUTION
GAUSSIAN NOISE (ELECTRONIC)
VEHICLES
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Physique [physics]
Mathématiques [math]
Informatique [cs]
Physique [physics]
Mathématiques [math]
Informatique [cs]
Résumé en anglais : [en]
This paper is focused on the problem of constrained multi-objective design optimization of aerospace vehicles. The design of such vehicles often involves disciplinary legacy models considered as black-box and computationally ...
Lire la suite >This paper is focused on the problem of constrained multi-objective design optimization of aerospace vehicles. The design of such vehicles often involves disciplinary legacy models considered as black-box and computationally expensive simulations characterized by a possible non-stationary behavior (an abrupt change in the response or a different smoothness along the design space). The expensive cost of an exact function evaluation makes the use of classical evolutionary multi-objective algorithms not tractable. While Bayesian Optimization based on Gaussian Process regression can handle the expensive cost of the evaluations, the non-stationary behavior of the functions can make it inefficient. A recent approach consisting of coupling Bayesian Optimization with Deep Gaussian Processes showed promising results for single-objective non-stationary problems. This paper presents an extension of this approach to the multi-objective context. The efficiency of the proposed approach is assessed with respect to classical optimization methods on an analytical test-case and on an aerospace design problem.Lire moins >
Lire la suite >This paper is focused on the problem of constrained multi-objective design optimization of aerospace vehicles. The design of such vehicles often involves disciplinary legacy models considered as black-box and computationally expensive simulations characterized by a possible non-stationary behavior (an abrupt change in the response or a different smoothness along the design space). The expensive cost of an exact function evaluation makes the use of classical evolutionary multi-objective algorithms not tractable. While Bayesian Optimization based on Gaussian Process regression can handle the expensive cost of the evaluations, the non-stationary behavior of the functions can make it inefficient. A recent approach consisting of coupling Bayesian Optimization with Deep Gaussian Processes showed promising results for single-objective non-stationary problems. This paper presents an extension of this approach to the multi-objective context. The efficiency of the proposed approach is assessed with respect to classical optimization methods on an analytical test-case and on an aerospace design problem.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02912982/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02912982/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02912982/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Scitech.pdf
- Accès libre
- Accéder au document
- Scitech.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Scitech.pdf
- Accès libre
- Accéder au document