• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Privacy Amplification by Decentralization
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Permalink :
http://hdl.handle.net/20.500.12210/57898
Title :
Privacy Amplification by Decentralization
Author(s) :
Cyffers, Edwige [Auteur]
Machine Learning in Information Networks [MAGNET]
Bellet, Aurelien [Auteur] refId
Machine Learning in Information Networks [MAGNET]
HAL domain(s) :
Informatique [cs]/Apprentissage [cs.LG]
Statistiques [stat]/Machine Learning [stat.ML]
English abstract : [en]
Analyzing data owned by several parties while achieving a good trade-off between utility and privacy is a key challenge in federated learning and analytics. In this work, we introduce a novel relaxation of local differential ...
Show more >
Analyzing data owned by several parties while achieving a good trade-off between utility and privacy is a key challenge in federated learning and analytics. In this work, we introduce a novel relaxation of local differential privacy (LDP) that naturally arises in fully decentralized algorithms, i.e., when participants exchange information by communicating along the edges of a network graph without central coordinator. This relaxation, that we call network DP, captures the fact that users have only a local view of the system. To show the relevance of network DP, we study a decentralized model of computation where a token performs a walk on the network graph and is updated sequentially by the party who receives it. For tasks such as real summation, histogram computation and optimization with gradient descent, we propose simple algorithms on ring and complete topologies. We prove that the privacy-utility trade-offs of our algorithms under network DP significantly improve upon what is achievable under LDP (sometimes even matching the utility of the trusted curator model), showing for the first time that formal privacy gains can be obtained from full decentralization. Our experiments illustrate the improved utility of our approach for decentralized training with stochastic gradient descent.Show less >
Language :
Anglais
ANR Project :
Apprentissage automatique décentralisé et personnalisé sous contraintes
Apprentissage distribué, personnalisé, préservant la privacité pour le traitement de la parole
Apprentissage automatique décentralisé et préservant la vie privée
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Submission date :
2021-11-20T02:00:46Z
Files
Thumbnail
  • https://hal.inria.fr/hal-03100005v3/document
  • Open access
  • Access the document
Thumbnail
  • http://arxiv.org/pdf/2012.05326
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017