• English
    • français
  • Aide
  •  | 
  • Contact
  •  | 
  • À Propos
  •  | 
  • Ouvrir une session
  • Portail HAL
  •  | 
  • Pages Pro Chercheurs
  • EN
  •  / 
  • FR
Voir le document 
  •   Accueil de LillOA
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • Voir le document
  •   Accueil de LillOA
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Justicia: A Stochastic SAT Approach to ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Type de document :
Communication dans un congrès avec actes
URL permanente :
http://hdl.handle.net/20.500.12210/57986
Titre :
Justicia: A Stochastic SAT Approach to Formally Verify Fairness
Auteur(s) :
Ghosh, Bishwamittra [Auteur]
National University of Singapore [NUS]
Basu, Debabrota [Auteur]
Scool [Scool]
Chalmers University of Technology [Gothenburg, Sweden]
Meel, Kuldeep S. [Auteur]
National University of Singapore [NUS]
Titre de la manifestation scientifique :
AAAI Conference on Artificial Intelligence
Ville :
Virtual
Pays :
Canada
Date de début de la manifestation scientifique :
2021-02
Titre de l’ouvrage :
Proceedings of the AAAI Conference on Artificial Intelligence
Titre de la revue :
Proceedings of the AAAI Conference on Artificial Intelligence
Discipline(s) HAL :
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Ordinateur et société [cs.CY]
Informatique [cs]/Logique en informatique [cs.LO]
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
As a technology ML is oblivious to societal good or bad, and thus, the field of fair machine learning has stepped up to propose multiple mathematical definitions, algorithms, and systems to ensure different notions of ...
Lire la suite >
As a technology ML is oblivious to societal good or bad, and thus, the field of fair machine learning has stepped up to propose multiple mathematical definitions, algorithms, and systems to ensure different notions of fairness in ML applications. Given the multitude of propositions, it has become imperative to formally verify the fairness metrics satisfied by different algorithms on different datasets. In this paper, we propose a stochastic satisfiability (SSAT) framework, Justicia, that formally verifies different fairness measures of supervised learning algorithms with respect to the underlying data distribution. We instantiate Justicia on multiple classification and bias mitigation algorithms, and datasets to verify different fairness metrics, such as disparate impact, statistical parity, and equalized odds. Justicia is scalable, accurate, and operates on non-Boolean and compound sensitive attributes unlike existing distribution-based verifiers, such as FairSquare and VeriFair. Being distribution-based by design, Justicia is more robust than the verifiers, such as AIF360, that operate on specific test samples. We also theoretically bound the finite-sample error of the verified fairness measure.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Références liée(s) :
https://github.com/meelgroup/justicia
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Date de dépôt :
2021-11-26T02:00:54Z
Fichiers
Thumbnail
  • http://arxiv.org/pdf/2009.06516
  • Accès libre
  • Accéder au document
Université de Lille

Mentions légales
Université de Lille © 2017