Coupling Helmholtz resonators for sound ...
Document type :
Communication dans un congrès avec actes
Permalink :
Title :
Coupling Helmholtz resonators for sound manipulation
Author(s) :
Sabat, R. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Leveque, G. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Pennec, Yan [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Torrent, D. [Auteur]
GROC, UJI, Institut de Noves Tecnologies de la Imatge, Universitat Jaume I
Djafari-Rouhani, Bahram [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Leveque, G. [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Pennec, Yan [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Torrent, D. [Auteur]
GROC, UJI, Institut de Noves Tecnologies de la Imatge, Universitat Jaume I
Djafari-Rouhani, Bahram [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Conference title :
15th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials 2021)
City :
NewYork
Country :
Etats-Unis d'Amérique
Start date of the conference :
2021-09-20
Journal title :
Proceedings of the 15th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials 2021)
Publisher :
IEEE
Publication date :
2021-09-20
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
In this work, we discuss the interaction between Helmholtz resonators, using the finite element method. We show that the coupling between two spheres gives rise to two resonant modes at low frequencies. One is symmetric ...
Show more >In this work, we discuss the interaction between Helmholtz resonators, using the finite element method. We show that the coupling between two spheres gives rise to two resonant modes at low frequencies. One is symmetric and corresponds to a mono-polar breathing mode, as currently observed. The second one is anti-symmetric and behaves as a dipole. We show that the first one generates an isotropic wave in the far pressure field while the second one gives rise to a directional propagative wave. The two modes are discussed as a function of the geometrical and physical parameters. When considering the thermo-viscous properties of air for a specific set of parameters, one finds that the behavior of the dipolar mode can be changed from a diffuser to an absorber. By managing double Helmholtz resonators, we aim to create a multifunctional meta-surface operating at two different frequencies.Show less >
Show more >In this work, we discuss the interaction between Helmholtz resonators, using the finite element method. We show that the coupling between two spheres gives rise to two resonant modes at low frequencies. One is symmetric and corresponds to a mono-polar breathing mode, as currently observed. The second one is anti-symmetric and behaves as a dipole. We show that the first one generates an isotropic wave in the far pressure field while the second one gives rise to a directional propagative wave. The two modes are discussed as a function of the geometrical and physical parameters. When considering the thermo-viscous properties of air for a specific set of parameters, one finds that the behavior of the dipolar mode can be changed from a diffuser to an absorber. By managing double Helmholtz resonators, we aim to create a multifunctional meta-surface operating at two different frequencies.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Comment :
oral
Source :
Submission date :
2021-12-03T05:00:57Z