Mastering Superior Performance Origins of ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
Mastering Superior Performance Origins of Ionic Polyurethane/Silica Hybrids
Author(s) :
Potaufeux, Jean-Emile [Auteur]
Université de Mons [UMons]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Odent, Jérémy [Auteur]
Centre d'Innovation et de Recherche en Matériaux Polymères [CIRMAP]
Université de Mons [UMons]
Notta-Cuvier, Delphine [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Barrau, Sophie [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Magnani, Chiara [Auteur]
Delille, Rémi [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Zhang, Chunbo [Auteur]
Liu, Guoming [Auteur]
Giannelis, Emmanuel P. [Auteur]
Cornell University [New York]
Müller, Alejandro J. [Auteur]
Lauro, Franck [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Raquez, Jean-Marie [Auteur]
Université de Mons [UMons]
Université de Mons [UMons]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Odent, Jérémy [Auteur]
Centre d'Innovation et de Recherche en Matériaux Polymères [CIRMAP]
Université de Mons [UMons]
Notta-Cuvier, Delphine [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Barrau, Sophie [Auteur]

Unité Matériaux et Transformations (UMET) - UMR 8207
Magnani, Chiara [Auteur]
Delille, Rémi [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Zhang, Chunbo [Auteur]
Liu, Guoming [Auteur]
Giannelis, Emmanuel P. [Auteur]
Cornell University [New York]
Müller, Alejandro J. [Auteur]
Lauro, Franck [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Raquez, Jean-Marie [Auteur]
Université de Mons [UMons]
Journal title :
ACS Applied Polymer Materials
Abbreviated title :
ACS Appl. Polym. Mater.
Volume number :
3
Pages :
6684-6693
Publisher :
American Chemical Society (ACS)
Publication date :
2021-11-11
ISSN :
2637-6105
English keyword(s) :
ionic interactions
structure-to-properties relationships
ionic hybrids
mechanistics
reversible exchanges
structure-to-properties relationships
ionic hybrids
mechanistics
reversible exchanges
HAL domain(s) :
Chimie/Matériaux
Chimie/Polymères
Chimie/Polymères
English abstract : [en]
Even though reversible interactions within ionic hydrogels are well-studied, underlying mechanisms responsible for the high-value added performance of ionic nanocomposites remain almost unexplored. We herein propose a ...
Show more >Even though reversible interactions within ionic hydrogels are well-studied, underlying mechanisms responsible for the high-value added performance of ionic nanocomposites remain almost unexplored. We herein propose a fundamental understanding aiming at elucidating the mechanism behind the reversible breaking and reformation of ionic bonding in the case of organic–inorganic hybrids made of a combination of imidazolium-functionalized poly(ethylene glycol)-based polyurethane (im-PU) and surface-modified sulfonate silica nanoparticles (SiO2–SO3H). Such ionic hybrids already demonstrated unique features related to the presence of electrostatic interactions, but the underlying mechanisms governing the overall material performance have never been discussed. To dissociate the reinforcement role of nanoparticles and ionic interactions, either standard nonionic SiO2 or ionic SiO2–SO3H nanoparticles were introduced into im-PU. Mechanical performances, thermal transitions, relaxation processes, and the morphology of the hybrids were deeply investigated to better comprehend the mechanisms at the origin of the ionic material reinforcement. In addition, a mechanistic investigation is proposed to quantify the dissipation energy ability of the as-proposed ionic hybrids, and an approach is presented to identify a characteristic time for restoration of reversible ionic bonds under different loading scenarios.Show less >
Show more >Even though reversible interactions within ionic hydrogels are well-studied, underlying mechanisms responsible for the high-value added performance of ionic nanocomposites remain almost unexplored. We herein propose a fundamental understanding aiming at elucidating the mechanism behind the reversible breaking and reformation of ionic bonding in the case of organic–inorganic hybrids made of a combination of imidazolium-functionalized poly(ethylene glycol)-based polyurethane (im-PU) and surface-modified sulfonate silica nanoparticles (SiO2–SO3H). Such ionic hybrids already demonstrated unique features related to the presence of electrostatic interactions, but the underlying mechanisms governing the overall material performance have never been discussed. To dissociate the reinforcement role of nanoparticles and ionic interactions, either standard nonionic SiO2 or ionic SiO2–SO3H nanoparticles were introduced into im-PU. Mechanical performances, thermal transitions, relaxation processes, and the morphology of the hybrids were deeply investigated to better comprehend the mechanisms at the origin of the ionic material reinforcement. In addition, a mechanistic investigation is proposed to quantify the dissipation energy ability of the as-proposed ionic hybrids, and an approach is presented to identify a characteristic time for restoration of reversible ionic bonds under different loading scenarios.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Research team(s) :
Ingénierie des Systèmes Polymères
Submission date :
2021-12-10T09:53:13Z
2021-12-13T09:44:47Z
2021-12-13T09:44:47Z