• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Computer Mouse Pointing Model Online ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
Title :
On Computer Mouse Pointing Model Online Identification and Endpoint Prediction
Author(s) :
Khalin, Anatolii [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Ushirobira, Rosane [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Efimov, Denis [Auteur] refId
Finite-time control and estimation for distributed systems [VALSE]
Casiez, Géry [Auteur] refId
Technology and knowledge for interaction [LOKI]
Journal title :
IEEE Transactions on Human-Machine Systems
Publisher :
IEEE
Publication date :
2022-10
ISSN :
2168-2291
HAL domain(s) :
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
This paper proposes a new simplified pointing model as a feedback-based dynamical system, including both human and computer sides of the process. It takes into account the commutation between the correction and ballistic ...
Show more >
This paper proposes a new simplified pointing model as a feedback-based dynamical system, including both human and computer sides of the process. It takes into account the commutation between the correction and ballistic phases in pointing tasks. We use the mouse position increment signal from noisy experimental data to achieve our main objectives: to estimate the model parameters online and predict the task endpoint. Some estimation tools and validation results, applying linear regression techniques on the experimental data are presented. We also compare with a similar prediction algorithm to show the potential of our algorithm's implementation.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-03501383/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03501383/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03501383/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03501383/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017