Bond graph model of a flapping wing micro-air ...
Document type :
Communication dans un congrès avec actes
Title :
Bond graph model of a flapping wing micro-air vehicle
Author(s) :
Dupont, Samuel [Auteur]
Optoélectronique - IEMN [OPTO - IEMN]
Grondel, Sébastien [Auteur]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Bontemps, Alexandre [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cattan, Eric [Auteur]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Coutellier, Daniel [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Optoélectronique - IEMN [OPTO - IEMN]
Grondel, Sébastien [Auteur]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Bontemps, Alexandre [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cattan, Eric [Auteur]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Coutellier, Daniel [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Conference title :
IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA 2014)
City :
Senigallia
Country :
Italie
Start date of the conference :
2014-09-10
Journal title :
2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA)
Publisher :
IEEE
English keyword(s) :
Bond Graph
MAV
dynamic model
flapping wings
MAV
dynamic model
flapping wings
HAL domain(s) :
Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
Sciences de l'ingénieur [physics]/Automatique / Robotique
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
Birds and insects demonstrate impressive aerial capacities in terms of hovering, backward flight or sudden acceleration and their diversity brings multiple solutions to design micro- and nano-air vehicles (MAV's and NAV's). ...
Show more >Birds and insects demonstrate impressive aerial capacities in terms of hovering, backward flight or sudden acceleration and their diversity brings multiple solutions to design micro- and nano-air vehicles (MAV's and NAV's). To allow a remotely flight control of such vehicles, many scientific and technological challenges have to be solved. First, it is necessary to mimic the flapping of an insect or bird in order to produce sufficient lift forces. Second, the conception and the design of the vehicle must integrate not only the design of the structure but also implement the electronic control functionalities. Within this context, this work presents a dynamic Bond Graph model of a flapping wing MAV. The objective is to use this model in order to better understand the flapping flight performed in nature. The Newton-Euler formalism with body fixed coordinates is chosen to model the dynamics of the MAV which features a body and two wings along which the aerodynamics efforts are integrated. Moreover, the graphical nature and explicit power flow path inherent in the Bond Graph facilitates model construction and troubleshooting. Open-Loop simulations are performed using commercial existing software and compared successfully with experimental data published on the RoboFly.Show less >
Show more >Birds and insects demonstrate impressive aerial capacities in terms of hovering, backward flight or sudden acceleration and their diversity brings multiple solutions to design micro- and nano-air vehicles (MAV's and NAV's). To allow a remotely flight control of such vehicles, many scientific and technological challenges have to be solved. First, it is necessary to mimic the flapping of an insect or bird in order to produce sufficient lift forces. Second, the conception and the design of the vehicle must integrate not only the design of the structure but also implement the electronic control functionalities. Within this context, this work presents a dynamic Bond Graph model of a flapping wing MAV. The objective is to use this model in order to better understand the flapping flight performed in nature. The Newton-Euler formalism with body fixed coordinates is chosen to model the dynamics of the MAV which features a body and two wings along which the aerodynamics efforts are integrated. Moreover, the graphical nature and explicit power flow path inherent in the Bond Graph facilitates model construction and troubleshooting. Open-Loop simulations are performed using commercial existing software and compared successfully with experimental data published on the RoboFly.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :
Files
- https://hal-uphf.archives-ouvertes.fr/hal-03552697/document
- Open access
- Access the document
- https://hal-uphf.archives-ouvertes.fr/hal-03552697/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Dupont2014.pdf
- Open access
- Access the document