Innovative transdermal delivery of insulin ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Innovative transdermal delivery of insulin using gelatin methacrylate-based microneedle patches in mice and mini-pigs
Author(s) :
Demir, Bilal [Auteur]
CEA Tech en régions [CEA-TECH-Reg]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Département Microtechnologies pour la Biologie et la Santé [DTBS]
Rosselle, Lea [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Voronova, Anna [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pagneux, Quentin [Auteur]
Quenon, Audrey [Auteur]
Institut Européen de Génomique du Diabète - European Genomic Institute for Diabetes - FR 3508 [EGID]
Gmyr, Valery [Auteur]
Institut Européen de Génomique du Diabète - European Genomic Institute for Diabetes - FR 3508 [EGID]
Jary, Dorothee [Auteur]
Hennuyer, Nathalie [Auteur]
Staels, Bart [Auteur]
Hubert, Thomas [Auteur]
Institut Européen de Génomique du Diabète - European Genomic Institute for Diabetes - FR 3508 [EGID]
Abderrahmani, Amar [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Plaisance, Valérie [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Pawlowski, Valérie [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Boukherroub, Rabah [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Vignoud, Severine [Auteur correspondant]
Département Microtechnologies pour la Biologie et la Santé [DTBS]
Szunerits, Sabine [Auteur correspondant]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
CEA Tech en régions [CEA-TECH-Reg]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Département Microtechnologies pour la Biologie et la Santé [DTBS]
Rosselle, Lea [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Voronova, Anna [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pagneux, Quentin [Auteur]
Quenon, Audrey [Auteur]
Institut Européen de Génomique du Diabète - European Genomic Institute for Diabetes - FR 3508 [EGID]
Gmyr, Valery [Auteur]
Institut Européen de Génomique du Diabète - European Genomic Institute for Diabetes - FR 3508 [EGID]
Jary, Dorothee [Auteur]
Hennuyer, Nathalie [Auteur]
Staels, Bart [Auteur]
Hubert, Thomas [Auteur]
Institut Européen de Génomique du Diabète - European Genomic Institute for Diabetes - FR 3508 [EGID]
Abderrahmani, Amar [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Plaisance, Valérie [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Pawlowski, Valérie [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Boukherroub, Rabah [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Vignoud, Severine [Auteur correspondant]
Département Microtechnologies pour la Biologie et la Santé [DTBS]
Szunerits, Sabine [Auteur correspondant]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
NanoBioInterfaces - IEMN [NBI - IEMN]
Journal title :
Nanoscale Horizons
Pages :
174-184
Publisher :
Royal Society of Chemistry
Publication date :
2022-02-01
ISSN :
2055-6756
HAL domain(s) :
Chimie
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
English abstract : [en]
Painless and controlled on-demand drug delivery is the ultimate goal for the management of various chronic diseases, including diabetes. , Painless and controlled on-demand drug delivery is the ultimate goal for the ...
Show more >Painless and controlled on-demand drug delivery is the ultimate goal for the management of various chronic diseases, including diabetes. , Painless and controlled on-demand drug delivery is the ultimate goal for the management of various chronic diseases, including diabetes. To achieve this purpose, microneedle patches are gaining increased attention. While degradable microneedle (MN) arrays are widely employed, the use of non-dissolving MN patches remains a challenge to overcome. In this study, we demonstrate that crosslinking gelatin methacrylate with polyethylene glycol diacrylate (PEGDA) is potent for engineering non-dissolving MN arrays. Incorporation of MoS 2 nanosheets as a photothermal component into MN hydrogels results in MNs featuring on-demand release properties. An optimized MoS 2 -MN array patch formed using a hydrogel solution containing 500 μg mL −1 of MoS 2 and photochemically crosslinked for 5 min shows required mechanical behavior under a normal compressive load to penetrate the stratum corneum of mice or pig skin and allows the delivery of macromolecular therapeutics such as insulin upon swelling. Using ex vivo and in vivo models, we show that the MoS 2 -MN patches can be used for loading and releasing insulin for therapeutic purposes. Indeed, transdermal administration of insulin loaded into MoS 2 -MN patches reduces blood glucose levels in C57BL/6 mice and mini-pigs comparably to subcutaneously injected insulin. We believe that this on-demand delivery system might alter the current insulin therapies and might be a potential approach for delivery of other proteins.Show less >
Show more >Painless and controlled on-demand drug delivery is the ultimate goal for the management of various chronic diseases, including diabetes. , Painless and controlled on-demand drug delivery is the ultimate goal for the management of various chronic diseases, including diabetes. To achieve this purpose, microneedle patches are gaining increased attention. While degradable microneedle (MN) arrays are widely employed, the use of non-dissolving MN patches remains a challenge to overcome. In this study, we demonstrate that crosslinking gelatin methacrylate with polyethylene glycol diacrylate (PEGDA) is potent for engineering non-dissolving MN arrays. Incorporation of MoS 2 nanosheets as a photothermal component into MN hydrogels results in MNs featuring on-demand release properties. An optimized MoS 2 -MN array patch formed using a hydrogel solution containing 500 μg mL −1 of MoS 2 and photochemically crosslinked for 5 min shows required mechanical behavior under a normal compressive load to penetrate the stratum corneum of mice or pig skin and allows the delivery of macromolecular therapeutics such as insulin upon swelling. Using ex vivo and in vivo models, we show that the MoS 2 -MN patches can be used for loading and releasing insulin for therapeutic purposes. Indeed, transdermal administration of insulin loaded into MoS 2 -MN patches reduces blood glucose levels in C57BL/6 mice and mini-pigs comparably to subcutaneously injected insulin. We believe that this on-demand delivery system might alter the current insulin therapies and might be a potential approach for delivery of other proteins.Show less >
Language :
Anglais
Popular science :
Non
Source :