Overview on HEVC Inter Frame Video Coding’s ...
Document type :
Communication dans un congrès avec actes
Title :
Overview on HEVC Inter Frame Video Coding’s Impact on the Energy Consumption for Next Generation WVSNs
Author(s) :
Ait-Beni-Ifit, Achraf [Auteur]
Alaoui-Fdili, Othmane [Auteur]
Corlay, Patrick [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coudoux, Francois-Xavier [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Hassouni, Mohammed [Auteur]
Alaoui-Fdili, Othmane [Auteur]
Corlay, Patrick [Auteur]

COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coudoux, Francois-Xavier [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Hassouni, Mohammed [Auteur]
Conference title :
9th International Conference on Model and Data Engineering, MEDI 2019
City :
Toulouse
Country :
France
Start date of the conference :
2019-10-28
Journal title :
Communications in Computer and Information Science
Publisher :
Springer
Publication date :
2019-10-16
English keyword(s) :
Inter prediction
Energy efficiency
Video compression
H.265/HEVC
Next generation wireless video sensor network
Raspberry Pi 2
Energy efficiency
Video compression
H.265/HEVC
Next generation wireless video sensor network
Raspberry Pi 2
HAL domain(s) :
Informatique [cs]
Sciences de l'ingénieur [physics]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Electronique
Sciences de l'ingénieur [physics]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Electronique
English abstract : [en]
With the advent of the High Efficiency Video Coding HEVC standard, wireless transmission of video data consumes more and more energy, a major concern in the field of Wireless Video Sensor Networks (WVSNs). The energy ...
Show more >With the advent of the High Efficiency Video Coding HEVC standard, wireless transmission of video data consumes more and more energy, a major concern in the field of Wireless Video Sensor Networks (WVSNs). The energy resources are limited, consisting only in the battery of the sensor nodes that determines their lifetime. In this paper, we propose an empirical parametric model to predict the energy consumption of an HEVC based video encoder in its inter prediction mode, used in the context of the next generation WVSNs. Such a model is of great interest to minimize the waste of energy of the encoding phase, while meeting the required video quality. The proposed model predicts energy consumption, considering the adopted Number of P frames (NP). A Raspberry Pi 2 card based video sensor node is used for modelling and validation, considering different configurations. The obtained results demonstrate that the proposed model describes well the occurred energy dissipation during the video encoding phase, with an average prediction error of 1.6%.Show less >
Show more >With the advent of the High Efficiency Video Coding HEVC standard, wireless transmission of video data consumes more and more energy, a major concern in the field of Wireless Video Sensor Networks (WVSNs). The energy resources are limited, consisting only in the battery of the sensor nodes that determines their lifetime. In this paper, we propose an empirical parametric model to predict the energy consumption of an HEVC based video encoder in its inter prediction mode, used in the context of the next generation WVSNs. Such a model is of great interest to minimize the waste of energy of the encoding phase, while meeting the required video quality. The proposed model predicts energy consumption, considering the adopted Number of P frames (NP). A Raspberry Pi 2 card based video sensor node is used for modelling and validation, considering different configurations. The obtained results demonstrate that the proposed model describes well the occurred energy dissipation during the video encoding phase, with an average prediction error of 1.6%.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :