Overview on HEVC Inter Frame Video Coding’s ...
Type de document :
Communication dans un congrès avec actes
Titre :
Overview on HEVC Inter Frame Video Coding’s Impact on the Energy Consumption for Next Generation WVSNs
Auteur(s) :
Ait-Beni-Ifit, Achraf [Auteur]
Alaoui-Fdili, Othmane [Auteur]
Corlay, Patrick [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coudoux, Francois-Xavier [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Hassouni, Mohammed [Auteur]
Alaoui-Fdili, Othmane [Auteur]
Corlay, Patrick [Auteur]

COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coudoux, Francois-Xavier [Auteur]
COMmunications NUMériques - IEMN [COMNUM - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Hassouni, Mohammed [Auteur]
Titre de la manifestation scientifique :
9th International Conference on Model and Data Engineering, MEDI 2019
Ville :
Toulouse
Pays :
France
Date de début de la manifestation scientifique :
2019-10-28
Titre de la revue :
Communications in Computer and Information Science
Éditeur :
Springer
Date de publication :
2019-10-16
Mot(s)-clé(s) en anglais :
Inter prediction
Energy efficiency
Video compression
H.265/HEVC
Next generation wireless video sensor network
Raspberry Pi 2
Energy efficiency
Video compression
H.265/HEVC
Next generation wireless video sensor network
Raspberry Pi 2
Discipline(s) HAL :
Informatique [cs]
Sciences de l'ingénieur [physics]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Electronique
Sciences de l'ingénieur [physics]
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Réseaux et télécommunications [cs.NI]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Sciences de l'ingénieur [physics]/Electronique
Résumé en anglais : [en]
With the advent of the High Efficiency Video Coding HEVC standard, wireless transmission of video data consumes more and more energy, a major concern in the field of Wireless Video Sensor Networks (WVSNs). The energy ...
Lire la suite >With the advent of the High Efficiency Video Coding HEVC standard, wireless transmission of video data consumes more and more energy, a major concern in the field of Wireless Video Sensor Networks (WVSNs). The energy resources are limited, consisting only in the battery of the sensor nodes that determines their lifetime. In this paper, we propose an empirical parametric model to predict the energy consumption of an HEVC based video encoder in its inter prediction mode, used in the context of the next generation WVSNs. Such a model is of great interest to minimize the waste of energy of the encoding phase, while meeting the required video quality. The proposed model predicts energy consumption, considering the adopted Number of P frames (NP). A Raspberry Pi 2 card based video sensor node is used for modelling and validation, considering different configurations. The obtained results demonstrate that the proposed model describes well the occurred energy dissipation during the video encoding phase, with an average prediction error of 1.6%.Lire moins >
Lire la suite >With the advent of the High Efficiency Video Coding HEVC standard, wireless transmission of video data consumes more and more energy, a major concern in the field of Wireless Video Sensor Networks (WVSNs). The energy resources are limited, consisting only in the battery of the sensor nodes that determines their lifetime. In this paper, we propose an empirical parametric model to predict the energy consumption of an HEVC based video encoder in its inter prediction mode, used in the context of the next generation WVSNs. Such a model is of great interest to minimize the waste of energy of the encoding phase, while meeting the required video quality. The proposed model predicts energy consumption, considering the adopted Number of P frames (NP). A Raspberry Pi 2 card based video sensor node is used for modelling and validation, considering different configurations. The obtained results demonstrate that the proposed model describes well the occurred energy dissipation during the video encoding phase, with an average prediction error of 1.6%.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :