Steady circular hydraulic jump on a rotating disk
Document type :
Article dans une revue scientifique
DOI :
Title :
Steady circular hydraulic jump on a rotating disk
Author(s) :
Ipatova, Anna [Auteur]
Lomonosov Moscow State University [MSU]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Smirnov, K.V. [Auteur]
Mogilevskiy, E.I. [Auteur]
Lomonosov Moscow State University [MSU]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Smirnov, K.V. [Auteur]
Mogilevskiy, E.I. [Auteur]
Journal title :
Journal of Fluid Mechanics
Pages :
A24
Publisher :
Cambridge University Press (CUP)
Publication date :
2021-11-25
ISSN :
0022-1120
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
The paper deals with the steady axially symmetric flow of a viscous liquid layer over a rotating disk. The liquid is fed near the axis of rotation and spreads due to inertia and the centrifugal force. The viscous shallow-water ...
Show more >The paper deals with the steady axially symmetric flow of a viscous liquid layer over a rotating disk. The liquid is fed near the axis of rotation and spreads due to inertia and the centrifugal force. The viscous shallow-water approach gives a system of ordinary differential equations governing the flow. We consider inertia, gravity, centrifugal and Coriolis forces and estimate the effect of surface tension. We found four qualitatively different flow regimes. Transition through these regimes shows the continuous evolution of the flow structure from a hydraulic jump on a static disk to a monotonic thickness decrease on a fast rotating one. We show that, in the absence of surface tension, the intensity of the jump gradually vanishes at a finite distance from the axis of rotation while the angular velocity increases. The surface tension decreases the jump radius and destroys the steady solution for a certain range of parameters.Show less >
Show more >The paper deals with the steady axially symmetric flow of a viscous liquid layer over a rotating disk. The liquid is fed near the axis of rotation and spreads due to inertia and the centrifugal force. The viscous shallow-water approach gives a system of ordinary differential equations governing the flow. We consider inertia, gravity, centrifugal and Coriolis forces and estimate the effect of surface tension. We found four qualitatively different flow regimes. Transition through these regimes shows the continuous evolution of the flow structure from a hydraulic jump on a static disk to a monotonic thickness decrease on a fast rotating one. We show that, in the absence of surface tension, the intensity of the jump gradually vanishes at a finite distance from the axis of rotation while the angular velocity increases. The surface tension decreases the jump radius and destroys the steady solution for a certain range of parameters.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Source :