Influence of photooxidation on ionic ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Influence of photooxidation on ionic reversible interactions of ionic poly(ether urethane)/silica hybrids
Auteur(s) :
Potaufeux, J.-E. [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Rapp, G. [Auteur]
Institut de Chimie de Clermont-Ferrand [ICCF]
Barrau, Sophie [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Liu, G. [Auteur]
Tsinghua University [Beijing] [THU]
Zhang, C. [Auteur]
Giannelis, Emmanuel P. [Auteur]
Cornell University [New York]
Notta-Cuvier, D. [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Lauro, F. [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Raquez, J.-M. [Auteur]
Odent, J. [Auteur]
Therias, S. [Auteur]
Institut de Chimie de Clermont-Ferrand [ICCF]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Rapp, G. [Auteur]
Institut de Chimie de Clermont-Ferrand [ICCF]
Barrau, Sophie [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Liu, G. [Auteur]
Tsinghua University [Beijing] [THU]
Zhang, C. [Auteur]
Giannelis, Emmanuel P. [Auteur]
Cornell University [New York]
Notta-Cuvier, D. [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Lauro, F. [Auteur]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Raquez, J.-M. [Auteur]
Odent, J. [Auteur]
Therias, S. [Auteur]
Institut de Chimie de Clermont-Ferrand [ICCF]
Titre de la revue :
Polymer Degradation and Stability
Nom court de la revue :
Polymer Degradation and Stability
Numéro :
197
Pagination :
109872
Éditeur :
Elsevier BV
Date de publication :
2022-03
ISSN :
0141-3910
Mot(s)-clé(s) en anglais :
Ionic nanocomposite
Dynamic bonding
Poly(ether urethane)/silica hybrid
Photooxidation
Accelerated environmental ageing
Dynamic bonding
Poly(ether urethane)/silica hybrid
Photooxidation
Accelerated environmental ageing
Discipline(s) HAL :
Chimie/Matériaux
Chimie/Polymères
Chimie/Polymères
Résumé en anglais : [en]
Organic-inorganic hybrids that combine the reversible nature of electrostatic interactions present in ionic systems with the reinforcement ability of nanoparticles in nanocomposites have the potential to revolutionize a ...
Lire la suite >Organic-inorganic hybrids that combine the reversible nature of electrostatic interactions present in ionic systems with the reinforcement ability of nanoparticles in nanocomposites have the potential to revolutionize a wide spectrum of technologies. However, the prediction of their service lifetime under photooxidative conditions has remained elusive. In this paper, the accelerated environmental ageing of ionic hybrid materials made by combining imidazolium-functionalized poly(ethylene glycol)-based polyurethane (im-PU) and surface-modified sulfonate silica nanoparticles (SiO2-SO3H) is addressed. Since the resulting ionic nanocomposites are dynamic, the present contribution aims to elucidate their temporal behavior and precisely distinguish the contribution of the nanoparticles addition to the photochemical behavior. Although the addition of SiO2-SO3H nanoparticles within im-PU matrix led to faster photooxidative degradation, the ionic imidazolium-sulfonate crosslinks are thought to be sustained under photooxidative conditions. The results further suggest that the molecular weight loss and the resulting ductile-to-brittle transition for the ionic hybrid under atmospheric ageing conditions are attributed to severe chain scissions into the im-PU backbone in the presence of SiO2-SO3H nanoparticles. Overall, the present investigation suggests that the silica nanoparticles addition is responsible for the prodegradant effect rather than the presence of reversible ionic interactions in the system. The present work thus provides a deeper understanding about the crucial role of the incorporation of dynamic linkages within ionic nanocomposites during photochemical ageing and can aid the future design and use of these systems.Lire moins >
Lire la suite >Organic-inorganic hybrids that combine the reversible nature of electrostatic interactions present in ionic systems with the reinforcement ability of nanoparticles in nanocomposites have the potential to revolutionize a wide spectrum of technologies. However, the prediction of their service lifetime under photooxidative conditions has remained elusive. In this paper, the accelerated environmental ageing of ionic hybrid materials made by combining imidazolium-functionalized poly(ethylene glycol)-based polyurethane (im-PU) and surface-modified sulfonate silica nanoparticles (SiO2-SO3H) is addressed. Since the resulting ionic nanocomposites are dynamic, the present contribution aims to elucidate their temporal behavior and precisely distinguish the contribution of the nanoparticles addition to the photochemical behavior. Although the addition of SiO2-SO3H nanoparticles within im-PU matrix led to faster photooxidative degradation, the ionic imidazolium-sulfonate crosslinks are thought to be sustained under photooxidative conditions. The results further suggest that the molecular weight loss and the resulting ductile-to-brittle transition for the ionic hybrid under atmospheric ageing conditions are attributed to severe chain scissions into the im-PU backbone in the presence of SiO2-SO3H nanoparticles. Overall, the present investigation suggests that the silica nanoparticles addition is responsible for the prodegradant effect rather than the presence of reversible ionic interactions in the system. The present work thus provides a deeper understanding about the crucial role of the incorporation of dynamic linkages within ionic nanocomposites during photochemical ageing and can aid the future design and use of these systems.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Date de dépôt :
2022-02-28T07:40:10Z
2022-03-02T08:54:24Z
2022-03-02T08:54:24Z