Flame Retardancy of Lightweight Sandwich ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Flame Retardancy of Lightweight Sandwich Composites
Auteur(s) :
Samyn, Fabienne [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Adanmenou, Roland [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Duquesne, Sophie [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Van Marle, Marieke [Auteur]
Weij, Sebastiaan [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Adanmenou, Roland [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Duquesne, Sophie [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Van Marle, Marieke [Auteur]
Weij, Sebastiaan [Auteur]
Titre de la revue :
Journal of Composites Science
Nom court de la revue :
J. Compos. Sci.
Numéro :
5
Pagination :
274
Éditeur :
MDPI AG
Date de publication :
2021-10-14
ISSN :
2504-477X
Mot(s)-clé(s) en anglais :
patterned polyester nonwoven
unsaturated polyester resin
sandwich composites
smoke toxicity
heat release
unsaturated polyester resin
sandwich composites
smoke toxicity
heat release
Discipline(s) HAL :
Chimie/Matériaux
Chimie/Polymères
Chimie/Polymères
Résumé en anglais : [en]
This study proposes an innovative solution to flame-retard a sandwich composite made of unsaturated polyester resin, glass fibre skins and polyester nonwoven core material. The strategy uses the core material as flame-retardant ...
Lire la suite >This study proposes an innovative solution to flame-retard a sandwich composite made of unsaturated polyester resin, glass fibre skins and polyester nonwoven core material. The strategy uses the core material as flame-retardant carrier, while the resin is also flame-retarded with aluminum trihydroxide (ATH). A screening of the fire-retardant performances of the core materials, covered with different types of phosphorous flame-retardant additives (phosphate, phosphinate, phosphonate), was performed using cone calorimetry. The best candidate was selected and evaluated in the sandwich panel. Great performances were obtained with ammonium polyphosphate (AP422) at 262 g/m2. The core material, when tested alone, did not ignite, and when used in the laminate, improved the fire behaviour by decreasing the peak of heat release rate (pHRR) and the total heat release (THR): the second peak in HRR observed for the references (full glass monolith and sandwich with the untreated core) was suppressed in this case. This improvement is attributed to the interaction occurring between the two FR additives, which leads to the formation of aluminophosphates, as shown using Electron Probe Micro-Analysis (EPMA), X-ray Diffraction (XRD) and solid-state 31P Nuclear Magnetic Resonance (NMR). The influence of the FR add-on on the core, as well as the ATH loading in the matrix, was studied separately to optimize the material performances in terms of smoke and heat release. The best compromise was obtained using AP422 at 182 g/m2 and 160 phr of ATH.Lire moins >
Lire la suite >This study proposes an innovative solution to flame-retard a sandwich composite made of unsaturated polyester resin, glass fibre skins and polyester nonwoven core material. The strategy uses the core material as flame-retardant carrier, while the resin is also flame-retarded with aluminum trihydroxide (ATH). A screening of the fire-retardant performances of the core materials, covered with different types of phosphorous flame-retardant additives (phosphate, phosphinate, phosphonate), was performed using cone calorimetry. The best candidate was selected and evaluated in the sandwich panel. Great performances were obtained with ammonium polyphosphate (AP422) at 262 g/m2. The core material, when tested alone, did not ignite, and when used in the laminate, improved the fire behaviour by decreasing the peak of heat release rate (pHRR) and the total heat release (THR): the second peak in HRR observed for the references (full glass monolith and sandwich with the untreated core) was suppressed in this case. This improvement is attributed to the interaction occurring between the two FR additives, which leads to the formation of aluminophosphates, as shown using Electron Probe Micro-Analysis (EPMA), X-ray Diffraction (XRD) and solid-state 31P Nuclear Magnetic Resonance (NMR). The influence of the FR add-on on the core, as well as the ATH loading in the matrix, was studied separately to optimize the material performances in terms of smoke and heat release. The best compromise was obtained using AP422 at 182 g/m2 and 160 phr of ATH.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Équipe(s) de recherche :
Ingénierie des Systèmes Polymères
Date de dépôt :
2022-02-28T09:34:08Z
2022-03-02T09:19:48Z
2022-03-02T09:19:48Z
Fichiers
- Samyn-2021-Flame Retardancy of Lightweight San.pdf
- Version éditeur
- Accès libre
- Accéder au document