Design of core-shell titania-heteropolyacid-metal ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
Design of core-shell titania-heteropolyacid-metal nanocomposites for photocatalytic reduction of co2 to co at ambient temperature
Author(s) :
Khodakov, Andrei [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Moldovan, Simona [Auteur]
Ordomsky, Vitaly [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Moldovan, Simona [Auteur]
Ordomsky, Vitaly [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Journal title :
Nanoscale Advances
Abbreviated title :
Nanoscale Adv.
Volume number :
1
Pages :
4321-4330
Publication date :
2019-11-01
ISSN :
2516-0230
HAL domain(s) :
Chimie/Catalyse
English abstract : [en]
The photocatalytic conversion of CO2 not only reduces the greenhouse effect, but also provides value-added solar fuels and chemicals. Herein, we report the design of new efficient core–shell nanocomposites for selective ...
Show more >The photocatalytic conversion of CO2 not only reduces the greenhouse effect, but also provides value-added solar fuels and chemicals. Herein, we report the design of new efficient core–shell nanocomposites for selective photocatalytic CO2 to CO conversion, which occurs at ambient temperature. A combination of characterization techniques (TEM, STEM-EDX, XPS, XRD, FTIR photoluminescence) indicates that the CO2 reduction occurs over zinc species highly dispersed on the heteropolyacid/titania core–shell nanocomposites. These core–shell structures create a semiconductor heterojunction, which increases charge separation and the lifetime of charge carriers' and leads to higher electron flux. In situ FTIR investigation of the reaction mechanism revealed that the reaction involved surface zinc bicarbonates as key reaction intermediates. In a series of catalysts containing noble and transition metals, zinc phosphotungstic acid–titania nanocomposites exhibit high activity reaching 50 μmol CO g−1 h−1 and selectivity (73%) in the CO2 photocatalytic reduction to CO at ambient temperature. The competitive water splitting reaction has been significantly suppressed over the Zn sites in the presence of CO2.Show less >
Show more >The photocatalytic conversion of CO2 not only reduces the greenhouse effect, but also provides value-added solar fuels and chemicals. Herein, we report the design of new efficient core–shell nanocomposites for selective photocatalytic CO2 to CO conversion, which occurs at ambient temperature. A combination of characterization techniques (TEM, STEM-EDX, XPS, XRD, FTIR photoluminescence) indicates that the CO2 reduction occurs over zinc species highly dispersed on the heteropolyacid/titania core–shell nanocomposites. These core–shell structures create a semiconductor heterojunction, which increases charge separation and the lifetime of charge carriers' and leads to higher electron flux. In situ FTIR investigation of the reaction mechanism revealed that the reaction involved surface zinc bicarbonates as key reaction intermediates. In a series of catalysts containing noble and transition metals, zinc phosphotungstic acid–titania nanocomposites exhibit high activity reaching 50 μmol CO g−1 h−1 and selectivity (73%) in the CO2 photocatalytic reduction to CO at ambient temperature. The competitive water splitting reaction has been significantly suppressed over the Zn sites in the presence of CO2.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
CNRS
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Collections :
Research team(s) :
Catalyse pour l’énergie et la synthèse de molécules plateforme (CEMOP)
Submission date :
2022-03-02T07:13:02Z
2023-11-27T13:57:45Z
2023-11-27T13:57:45Z
Files
- c9na00398c.pdf
- Non spécifié
- Open access
- Access the document