Influence of the strontium content on the ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Influence of the strontium content on the performance of la1-xsrxmno3/bi1. 5er0. 5o3 composite electrodes for low temperature solid oxide fuel cells
Auteur(s) :
Pajot, Martin [Auteur]
Duffort, Victor [Auteur]
Capoen, Edouard [Auteur]
Mamede, Anne-Sophie [Auteur]
Vannier, Rose-Noelle [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Duffort, Victor [Auteur]

Capoen, Edouard [Auteur]

Mamede, Anne-Sophie [Auteur]

Vannier, Rose-Noelle [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Titre de la revue :
Journal of Power Sources
Nom court de la revue :
J. Power Sources
Numéro :
450
Date de publication :
2020-02-29
ISSN :
0378-7753
Mot(s)-clé(s) en anglais :
Lanthanum strontium manganese oxides
Stabilized bismuth oxides
Low temperature solid oxide fuel cells
Stabilized bismuth oxides
Low temperature solid oxide fuel cells
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
The possibility to use bilayer electrolytes based on bismuth oxide conductors should lead to a drastic decrease of solid oxide fuel cell (SOFC) operation temperature and calls for a reevaluation of some of the parameters ...
Lire la suite >The possibility to use bilayer electrolytes based on bismuth oxide conductors should lead to a drastic decrease of solid oxide fuel cell (SOFC) operation temperature and calls for a reevaluation of some of the parameters optimized for high temperature applications. In this work we reinvestigate the promising La1-xSrxMnO3/Bi1.5Er0.5O3 (LSM/ESB) composite electrodes, varying the strontium content from x ~ 0.2, the typical high temperature LSM composition, to evaluate the optimum composition. Increasing the strontium content up to x = 0.4–0.5 leads to a 14% decrease of the activation energy, resulting in a 50% decrease in the polarization resistance of symmetric cells at 500 °C compared to the traditional La0.85Sr0.15MnO3 composition with similar microstructure. The electrode performance is deteriorated by further increase in the strontium content. Based on surface composition, investigated by low energy ion scattering, we show that the SrO surface segregation proposed as the main deterioration mechanism for LSM based HT-SOFC is not an issue below 800 °C. Furthermore, we propose that the increase in performance is related to the decrease of cationic vacancies in LSM observed for high strontium content, which may help the oxygen dissociation and surface transport.Lire moins >
Lire la suite >The possibility to use bilayer electrolytes based on bismuth oxide conductors should lead to a drastic decrease of solid oxide fuel cell (SOFC) operation temperature and calls for a reevaluation of some of the parameters optimized for high temperature applications. In this work we reinvestigate the promising La1-xSrxMnO3/Bi1.5Er0.5O3 (LSM/ESB) composite electrodes, varying the strontium content from x ~ 0.2, the typical high temperature LSM composition, to evaluate the optimum composition. Increasing the strontium content up to x = 0.4–0.5 leads to a 14% decrease of the activation energy, resulting in a 50% decrease in the polarization resistance of symmetric cells at 500 °C compared to the traditional La0.85Sr0.15MnO3 composition with similar microstructure. The electrode performance is deteriorated by further increase in the strontium content. Based on surface composition, investigated by low energy ion scattering, we show that the SrO surface segregation proposed as the main deterioration mechanism for LSM based HT-SOFC is not an issue below 800 °C. Furthermore, we propose that the increase in performance is related to the decrease of cationic vacancies in LSM observed for high strontium content, which may help the oxygen dissociation and surface transport.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
CNRS
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Collections :
Équipe(s) de recherche :
Matériaux inorganiques, structures, systèmes et propriétés (MISSP)
Matériaux pour la catalyse (MATCAT)
Matériaux pour la catalyse (MATCAT)
Date de dépôt :
2022-03-02T07:14:24Z