Structural and microstructural features ...
Document type :
Article dans une revue scientifique
DOI :
Permalink :
Title :
Structural and microstructural features of lead‐free BNT–BT thin films: Nanoscale electromechanical response analysis
Author(s) :
Mendez‐González, Yanela [Auteur]
Universidade Federal de Uberlândia - UFU (BRAZIL)
Universidad de La Habana [Cuba]
Ferri, Anthony [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
UCCS Équipe Couches Minces & Nanomatériaux
Lima, Elton [Auteur]
Hamieh, Ahmad [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Remiens, Denis [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Peláiz‐Barranco, Aimé [Auteur]
Universidad de La Habana [Cuba]
Silva, Atair [Auteur]
Universidade Federal de Uberlândia - UFU (BRAZIL)
Santos Guerra, José [Auteur]
Universidade Federal de Uberlândia - UFU (BRAZIL)
Universidade Federal de Uberlândia - UFU (BRAZIL)
Universidad de La Habana [Cuba]
Ferri, Anthony [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
UCCS Équipe Couches Minces & Nanomatériaux
Lima, Elton [Auteur]
Hamieh, Ahmad [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Remiens, Denis [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
Matériaux et Acoustiques pour MIcro et NAno systèmes intégrés - IEMN [MAMINA - IEMN]
Peláiz‐Barranco, Aimé [Auteur]
Universidad de La Habana [Cuba]
Silva, Atair [Auteur]
Universidade Federal de Uberlândia - UFU (BRAZIL)
Santos Guerra, José [Auteur]
Universidade Federal de Uberlândia - UFU (BRAZIL)
Journal title :
Journal of the American Ceramic Society
Publisher :
Wiley
Publication date :
2021
ISSN :
0002-7820
HAL domain(s) :
Chimie/Matériaux
Chimie
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Sciences de l'ingénieur [physics]/Matériaux
Sciences de l'ingénieur [physics]/Acoustique [physics.class-ph]
Chimie
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Sciences de l'ingénieur [physics]/Matériaux
Sciences de l'ingénieur [physics]/Acoustique [physics.class-ph]
English abstract : [en]
The structural, microstructural, and electromechanical properties have been investigated at the nanoscale, as a function of the lanthanum concentration, in Bi0.506Na0.46Ba0.08–3x/2LaxTiO3 (x = 0, 2 and 3 at %) (BNLBT–x) ...
Show more >The structural, microstructural, and electromechanical properties have been investigated at the nanoscale, as a function of the lanthanum concentration, in Bi0.506Na0.46Ba0.08–3x/2LaxTiO3 (x = 0, 2 and 3 at %) (BNLBT–x) lead‐free thin films. The structural characterization, investigated from X‐ray diffraction and Raman spectroscopy, confirmed the formation of the perovskite structure and suggests the coexistence of both antiferroelectric (tetragonal) and ferroelectric (rhombohedral) phases. The surface morphology, characterized by atomic force microscopy, has shown a dense and crack‐free nanostructured surface for all the studied compositions, noting that the increase in the lanthanum content promoted a decrease in both the grain size and surface roughness. PFM imaging analyses have evidenced the ferroelectric domain structure over the surface, as well as the presence of non–piezoelectric regions attributed to the antiferroelectric phase. PFM spectroscopy measurements revealed a reliable switching behavior for locally probed ferroelectric domains, yielding a noticeable local piezoactivity, which indeed shows to increase with the increase in the doping content. The static domain wall was also analyzed in terms of the nanoscale domain structure, and the obtained dimensionality indicated a local electric field‐induced structural disorder. The clear local piezo/ferroelectric nature highlighted on the studied materials underlines the potential for applications of the BNLBT–x films for their integration into advanced electronic nanodevices.Show less >
Show more >The structural, microstructural, and electromechanical properties have been investigated at the nanoscale, as a function of the lanthanum concentration, in Bi0.506Na0.46Ba0.08–3x/2LaxTiO3 (x = 0, 2 and 3 at %) (BNLBT–x) lead‐free thin films. The structural characterization, investigated from X‐ray diffraction and Raman spectroscopy, confirmed the formation of the perovskite structure and suggests the coexistence of both antiferroelectric (tetragonal) and ferroelectric (rhombohedral) phases. The surface morphology, characterized by atomic force microscopy, has shown a dense and crack‐free nanostructured surface for all the studied compositions, noting that the increase in the lanthanum content promoted a decrease in both the grain size and surface roughness. PFM imaging analyses have evidenced the ferroelectric domain structure over the surface, as well as the presence of non–piezoelectric regions attributed to the antiferroelectric phase. PFM spectroscopy measurements revealed a reliable switching behavior for locally probed ferroelectric domains, yielding a noticeable local piezoactivity, which indeed shows to increase with the increase in the doping content. The static domain wall was also analyzed in terms of the nanoscale domain structure, and the obtained dimensionality indicated a local electric field‐induced structural disorder. The clear local piezo/ferroelectric nature highlighted on the studied materials underlines the potential for applications of the BNLBT–x films for their integration into advanced electronic nanodevices.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Non spécifiée
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Research team(s) :
Couches minces & nanomatériaux (CMNM)
Submission date :
2022-03-21T10:07:12Z