Mn- or Cu- substituted LaFeO 3 -based ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Mn- or Cu- substituted LaFeO 3 -based three-way catalysts: Highlighting different catalytically operating modes of La 0.67 Fe 0.8 M 0.2 O 3 (M=Cu, Mn)
Author(s) :
Nandi, Shreya [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Wu, Jiang Xiang [Auteur]
Simon, Pardis [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Nuns, Nicolas [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Trentesaux, Martine [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Tougerti, Asma [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Fonda, Emiliano [Auteur]
Girardon, Jean-Sébastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Paul, Jean-Francois [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Mamede, Anne-Sophie [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Berrier, Elise [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Wu, Jiang Xiang [Auteur]
Simon, Pardis [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Nuns, Nicolas [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Trentesaux, Martine [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Tougerti, Asma [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Fonda, Emiliano [Auteur]
Girardon, Jean-Sébastien [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Paul, Jean-Francois [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Mamede, Anne-Sophie [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Berrier, Elise [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Journal title :
Applied Catalysis B: Environmental
Abbreviated title :
Applied Catalysis B: Environmental
Volume number :
296
Pages :
120330
Publication date :
2021-11-05
ISSN :
09263373
English keyword(s) :
Perovskite
Three-way catalysis
Operando
Raman spectroscopy
XPS
Three-way catalysis
Operando
Raman spectroscopy
XPS
HAL domain(s) :
Chimie/Catalyse
Chimie/Chimie théorique et/ou physique
Chimie/Chimie théorique et/ou physique
English abstract : [en]
The present work aims at presenting our investigations on the redox behaviour of Cu- or Mn-doped LaFeO-based perovskite powders under three-way catalysis (TWC) relevant conditions. Two distinct La-deficient catalysts of ...
Show more >The present work aims at presenting our investigations on the redox behaviour of Cu- or Mn-doped LaFeO-based perovskite powders under three-way catalysis (TWC) relevant conditions. Two distinct La-deficient catalysts of generic formula LaFeMnO and LaFeCuO denoted as Mn-dLFO and Cu-dLFO, respectively, were prepared based on the conventional citrate complexation route and systematically investigated using complementary characterisation techniques. This study has made it possible to highlight fundamentally different structures. In Cu-dLFO, most Cu cations are expelled from the LaFeO perovskite lattice in the form of a segregated CuO phase. On the other hand, in the case of Mn-dLFO, majority of Mn cations are stabilised within the perovskite solid solution, while substantial iron exsolution in the form of an additional -FeO phase was evidenced. The evolution of both catalysts during CO-TPR using operando Raman revealed the formation of polycyclic aromatic hydrocarbons (PAHs) besides the relative structural stability of the LaFeO lattice. The reduction of Mn to Mn, indirectly suggested by Raman analysis, is further supported by a quasi-in situ XPS study. The latter also evidenced the reduction of CuO to metal copper to a large extent in Cu-dLFO. In addition, a share of the -FeO phase present in Mn-dLFO is reduced to metal Fe during CO oxidation, and is fully re-oxidised upon NO reduction. Our investigation thus evidences that both copper and manganese sites in Cu-dLFO and Mn-dLFO, respectively, are redox-active centres upon CO oxidation/NO reduction with, however, varying operating modes underpinned by their fundamentally different structures.Show less >
Show more >The present work aims at presenting our investigations on the redox behaviour of Cu- or Mn-doped LaFeO-based perovskite powders under three-way catalysis (TWC) relevant conditions. Two distinct La-deficient catalysts of generic formula LaFeMnO and LaFeCuO denoted as Mn-dLFO and Cu-dLFO, respectively, were prepared based on the conventional citrate complexation route and systematically investigated using complementary characterisation techniques. This study has made it possible to highlight fundamentally different structures. In Cu-dLFO, most Cu cations are expelled from the LaFeO perovskite lattice in the form of a segregated CuO phase. On the other hand, in the case of Mn-dLFO, majority of Mn cations are stabilised within the perovskite solid solution, while substantial iron exsolution in the form of an additional -FeO phase was evidenced. The evolution of both catalysts during CO-TPR using operando Raman revealed the formation of polycyclic aromatic hydrocarbons (PAHs) besides the relative structural stability of the LaFeO lattice. The reduction of Mn to Mn, indirectly suggested by Raman analysis, is further supported by a quasi-in situ XPS study. The latter also evidenced the reduction of CuO to metal copper to a large extent in Cu-dLFO. In addition, a share of the -FeO phase present in Mn-dLFO is reduced to metal Fe during CO oxidation, and is fully re-oxidised upon NO reduction. Our investigation thus evidences that both copper and manganese sites in Cu-dLFO and Mn-dLFO, respectively, are redox-active centres upon CO oxidation/NO reduction with, however, varying operating modes underpinned by their fundamentally different structures.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
CNRS
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Collections :
Research team(s) :
Matériaux pour la catalyse (MATCAT)
Modélisation et spectroscopies (MODSPEC)
Modélisation et spectroscopies (MODSPEC)
Submission date :
2022-03-24T09:02:19Z
2022-04-27T12:24:07Z
2022-05-05T13:52:25Z
2022-04-27T12:24:07Z
2022-05-05T13:52:25Z