Engineering the Distinct Structure Interface ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Engineering the Distinct Structure Interface of Subnano-alumina Domains on Silica for Acidic Amorphous Silica–Alumina toward Biorefining
Auteur(s) :
Wang, Zichun [Auteur]
Buechel, Robert [Auteur]
Jiang, Yijiao [Auteur]
Wang, Lizhuo [Auteur]
Xu, Haimei [Auteur]
Castignolles, Patrice [Auteur]
Gaborieau, Marianne [Auteur]
Lafon, Olivier [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Institut universitaire de France [IUF]
Amoureux, Jean-Paul [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Bruker BioSpin MRI GmbH [Ettlingen, Germany]
Hunger, Michael [Auteur]
Baiker, Alfons [Auteur]
Huang, Jun [Auteur]
Buechel, Robert [Auteur]
Jiang, Yijiao [Auteur]
Wang, Lizhuo [Auteur]
Xu, Haimei [Auteur]
Castignolles, Patrice [Auteur]
Gaborieau, Marianne [Auteur]
Lafon, Olivier [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Institut universitaire de France [IUF]
Amoureux, Jean-Paul [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Bruker BioSpin MRI GmbH [Ettlingen, Germany]
Hunger, Michael [Auteur]
Baiker, Alfons [Auteur]
Huang, Jun [Auteur]
Titre de la revue :
JACS Au
Numéro :
1
Pagination :
262-271
Éditeur :
ACS Publications
Date de publication :
2021-03-22
ISSN :
2691-3704
Mot(s)-clé(s) en anglais :
Amorphous silica−alumina
Brønsted and Lewis acidities
double-flame-spray pyrolysis
glucose conversion
cyclohexanol dehydration
solid-state NMR
Brønsted and Lewis acidities
double-flame-spray pyrolysis
glucose conversion
cyclohexanol dehydration
solid-state NMR
Discipline(s) HAL :
Chimie/Chimie inorganique
Chimie/Matériaux
Chimie/Catalyse
Chimie/Matériaux
Chimie/Catalyse
Résumé en anglais : [en]
Amorphous silica–aluminas (ASAs) are important solid catalysts and supports for many industrially essential and sustainable processes, such as hydrocarbon transformation and biorefining. However, the wide distribution of ...
Lire la suite >Amorphous silica–aluminas (ASAs) are important solid catalysts and supports for many industrially essential and sustainable processes, such as hydrocarbon transformation and biorefining. However, the wide distribution of acid strength on ASAs often results in undesired side reactions, lowering the product selectivity. Here we developed a strategy for the synthesis of a unique class of ASAs with unvarying strength of Brønsted acid sites (BAS) and Lewis acid sites (LAS) using double-flame-spray pyrolysis. Structural characterization using high-resolution transmission electron microscopy (TEM) and solid-state nuclear magnetic resonance (NMR) spectroscopy showed that the uniform acidity is due to a distinct nanostructure, characterized by a uniform interface of silica–alumina and homogeneously dispersed alumina domains. The BAS population density of as-prepared ASAs is up to 6 times higher than that obtained by classical methods. The BAS/LAS ratio, as well as the population densities of BAS and LAS of these ASAs, could be tuned in a broad range. In cyclohexanol dehydration, the uniform Brønsted acid strength provides a high selectivity to cyclohexene and a nearly linear correlation between acid site densities and cyclohexanol conversion. Moreover, the concerted action of these BAS and LAS leads to an excellent bifunctional Brønsted–Lewis acid catalyst for glucose dehydration, affording a superior 5-hydroxymethylfurfural yield.Lire moins >
Lire la suite >Amorphous silica–aluminas (ASAs) are important solid catalysts and supports for many industrially essential and sustainable processes, such as hydrocarbon transformation and biorefining. However, the wide distribution of acid strength on ASAs often results in undesired side reactions, lowering the product selectivity. Here we developed a strategy for the synthesis of a unique class of ASAs with unvarying strength of Brønsted acid sites (BAS) and Lewis acid sites (LAS) using double-flame-spray pyrolysis. Structural characterization using high-resolution transmission electron microscopy (TEM) and solid-state nuclear magnetic resonance (NMR) spectroscopy showed that the uniform acidity is due to a distinct nanostructure, characterized by a uniform interface of silica–alumina and homogeneously dispersed alumina domains. The BAS population density of as-prepared ASAs is up to 6 times higher than that obtained by classical methods. The BAS/LAS ratio, as well as the population densities of BAS and LAS of these ASAs, could be tuned in a broad range. In cyclohexanol dehydration, the uniform Brønsted acid strength provides a high selectivity to cyclohexene and a nearly linear correlation between acid site densities and cyclohexanol conversion. Moreover, the concerted action of these BAS and LAS leads to an excellent bifunctional Brønsted–Lewis acid catalyst for glucose dehydration, affording a superior 5-hydroxymethylfurfural yield.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
CNRS
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Centrale Lille
ENSCL
Univ. Artois
Université de Lille
Collections :
Équipe(s) de recherche :
RMN et matériaux inorganiques (RM2I)
Date de dépôt :
2022-03-24T09:03:06Z
2023-05-04T17:02:40Z
2023-05-04T17:02:40Z
Fichiers
- 2021%20JACS%20Au.pdf
- Accès libre
- Accéder au document