Twitter as a Comparable Corpus to build ...
Document type :
Communication dans un congrès avec actes
Title :
Twitter as a Comparable Corpus to build Multilingual Affective Lexicons
Author(s) :
Fraisse, Amel [Auteur]
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur [LIMSI]
Paroubek, Patrick [Auteur]
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur [LIMSI]

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur [LIMSI]
Paroubek, Patrick [Auteur]
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur [LIMSI]
Conference title :
The 7th Workshop on Building and Using Comparable Corpora
City :
Reykjavik
Country :
Islande
Start date of the conference :
2014-05-26
Book title :
The 7th Workshop on Building and Using Comparable Corpora Proceedings
English keyword(s) :
Affective Lexicon
Comparable Corpus
Sentiment Analysis
Comparable Corpus
Sentiment Analysis
HAL domain(s) :
Informatique [cs]/Traitement du texte et du document
English abstract : [en]
The main issue of any lexicon-based sentiment analysis system is the lack of affective lexicons. Such lexicons contain lists of words annotated with their affective classes. There exist some number of such resources but ...
Show more >The main issue of any lexicon-based sentiment analysis system is the lack of affective lexicons. Such lexicons contain lists of words annotated with their affective classes. There exist some number of such resources but only for few languages and often for a small number of affective classes, generally restricted to two classes (positive and negative). In this paper we propose to use Twitter as a comparable corpus to generate a fine-grained and multilingual affective lexicons. Our approach is based in the co-occurence between English and target affective words in the same emotional corpus. And it can be applied to any number of target languages. In this paper we describe the building of affective lexicons for seven languages (en, fr, de, it, es, pt, ru).Show less >
Show more >The main issue of any lexicon-based sentiment analysis system is the lack of affective lexicons. Such lexicons contain lists of words annotated with their affective classes. There exist some number of such resources but only for few languages and often for a small number of affective classes, generally restricted to two classes (positive and negative). In this paper we propose to use Twitter as a comparable corpus to generate a fine-grained and multilingual affective lexicons. Our approach is based in the co-occurence between English and target affective words in the same emotional corpus. And it can be applied to any number of target languages. In this paper we describe the building of affective lexicons for seven languages (en, fr, de, it, es, pt, ru).Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-01615963/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-01615963/document
- Open access
- Access the document
- document
- Open access
- Access the document
- BUCC14.pdf
- Open access
- Access the document