Deriving Particulate Organic Carbon in ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Deriving Particulate Organic Carbon in Coastal Waters from Remote Sensing: Inter-Comparison Exercise and Development of a Maximum Band-Ratio Approach
Auteur(s) :
Tran, Trung Kien [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Duforêt-Gaurier, Lucile [Auteur]
Université du Littoral Côte d'Opale [ULCO]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Vantrepotte, Vincent [Auteur]
Université du Littoral Côte d'Opale [ULCO]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Jorge, Daniel Schaffer Ferreira [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Meriaux, Xavier [Auteur]
Université du Littoral Côte d'Opale [ULCO]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Cauvin, Arnaud [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Fanton D’andon, Odile [Auteur]
Loisel, Hubert [Auteur]
Université du Littoral Côte d'Opale [ULCO]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Duforêt-Gaurier, Lucile [Auteur]
Université du Littoral Côte d'Opale [ULCO]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Vantrepotte, Vincent [Auteur]
Université du Littoral Côte d'Opale [ULCO]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Jorge, Daniel Schaffer Ferreira [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Meriaux, Xavier [Auteur]
Université du Littoral Côte d'Opale [ULCO]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Cauvin, Arnaud [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Fanton D’andon, Odile [Auteur]
Loisel, Hubert [Auteur]
Université du Littoral Côte d'Opale [ULCO]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Titre de la revue :
Remote Sensing
Special Issue Understanding the Complexity of Coastal and Inland Waters using Remote Sensing
Special Issue Understanding the Complexity of Coastal and Inland Waters using Remote Sensing
Pagination :
2849
Éditeur :
MDPI
Date de publication :
2019-12
ISSN :
2072-4292
Mot(s)-clé(s) en anglais :
particulate organic carbon
ocean color
remote sensing
coastal waters
bio-optical algorithm
ocean color
remote sensing
coastal waters
bio-optical algorithm
Discipline(s) HAL :
Planète et Univers [physics]/Sciences de la Terre/Océanographie
Résumé en anglais : [en]
Recently, different algorithms have been developed to assess near-surface particulate organic matter (POC) concentration over coastal waters. In this study, we gathered an extensive in situ dataset representing various ...
Lire la suite >Recently, different algorithms have been developed to assess near-surface particulate organic matter (POC) concentration over coastal waters. In this study, we gathered an extensive in situ dataset representing various contrasted bio-optical coastal environments at low, medium, and high latitudes, with various bulk particulate matter chemical compositions (mineral-dominated, 50% of the data set, mixed, 40%, or organic-dominated, 10%). The dataset includes 606 coincident measurements of POC concentration and remote-sensing reflectance, Rrs, with POC concentrations covering three orders of magnitude. Twelve existing algorithms have then been tested on this data set, and a new one was proposed. The results show that the performance of historical algorithms depends on the type of water, with an overall low performance observed for mineral-dominated waters. Furthermore, none of the tested algorithms provided satisfactory results over the whole POC range. A novel approach was thus developed based on a maximum band ratio of Rrs (red/blue, red/yellow or red/green ratio). Based on the standard statistical metric for the evaluation of inverse models, the new algorithm presents the best performance. The root-mean square deviation for log-transformed data (RMSDlog) is 0.25. The mean absolute percentage difference (MAPD) is 37.48%. The mean bias (MB) and median ratio (MR) values are 0.54 μg L−1 and 1.02, respectively. This algorithm replicates quite well the distribution of in situ data. The new algorithm was also tested on a matchup dataset gathering 154 coincident MERIS (MEdium Resolution Imaging Spectrometer) Rrs and in situ POC concentration sampled along the French coast. The matchup analysis showed that the performance of the new algorithm is satisfactory (RMSDlog = 0.24, MAPD = 34.16%, MR = 0.92). A regional illustration of the model performance for the Louisiana continental shelf shows that monthly mean POC concentrations derived from MERIS with the new algorithm are consistent with those derived from the 2016 algorithm of Le et al. which was specifically developed for this region. View Full-TextLire moins >
Lire la suite >Recently, different algorithms have been developed to assess near-surface particulate organic matter (POC) concentration over coastal waters. In this study, we gathered an extensive in situ dataset representing various contrasted bio-optical coastal environments at low, medium, and high latitudes, with various bulk particulate matter chemical compositions (mineral-dominated, 50% of the data set, mixed, 40%, or organic-dominated, 10%). The dataset includes 606 coincident measurements of POC concentration and remote-sensing reflectance, Rrs, with POC concentrations covering three orders of magnitude. Twelve existing algorithms have then been tested on this data set, and a new one was proposed. The results show that the performance of historical algorithms depends on the type of water, with an overall low performance observed for mineral-dominated waters. Furthermore, none of the tested algorithms provided satisfactory results over the whole POC range. A novel approach was thus developed based on a maximum band ratio of Rrs (red/blue, red/yellow or red/green ratio). Based on the standard statistical metric for the evaluation of inverse models, the new algorithm presents the best performance. The root-mean square deviation for log-transformed data (RMSDlog) is 0.25. The mean absolute percentage difference (MAPD) is 37.48%. The mean bias (MB) and median ratio (MR) values are 0.54 μg L−1 and 1.02, respectively. This algorithm replicates quite well the distribution of in situ data. The new algorithm was also tested on a matchup dataset gathering 154 coincident MERIS (MEdium Resolution Imaging Spectrometer) Rrs and in situ POC concentration sampled along the French coast. The matchup analysis showed that the performance of the new algorithm is satisfactory (RMSDlog = 0.24, MAPD = 34.16%, MR = 0.92). A regional illustration of the model performance for the Louisiana continental shelf shows that monthly mean POC concentrations derived from MERIS with the new algorithm are consistent with those derived from the 2016 algorithm of Le et al. which was specifically developed for this region. View Full-TextLire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-02520429/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02520429/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02520429/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-02520429/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- remotesensing-11-02849.pdf
- Accès libre
- Accéder au document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- remotesensing-11-02849.pdf
- Accès libre
- Accéder au document