• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire d'Océanologie et de Géosciences (LOG) - UMR 8187
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire d'Océanologie et de Géosciences (LOG) - UMR 8187
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Empirical nonlinear determination of the ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1117/12.869730
Title :
Empirical nonlinear determination of the diffuse attenuation coefficient Kd(490) in coastal waters from ocean color images
Author(s) :
Jamet, Cédric [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Loisel, Hubert [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Dessailly, D. [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Journal title :
Proceedings of SPIE, the International Society for Optical Engineering
Pages :
785806
Publisher :
SPIE, The International Society for Optical Engineering
Publication date :
2010-11-03
ISSN :
0277-786X
HAL domain(s) :
Planète et Univers [physics]/Sciences de la Terre/Océanographie
English abstract : [en]
The fine-scale study of the diffuse attenuation coefficient, Kd(λ), of the spectral solar downward irradiance is only feasible by ocean color remote sensing. Several empirical and semi-analytical methods exist. However, ...
Show more >
The fine-scale study of the diffuse attenuation coefficient, Kd(λ), of the spectral solar downward irradiance is only feasible by ocean color remote sensing. Several empirical and semi-analytical methods exist. However, most of tthese models are generally applicable for clear open ocean waters. They show limitations when applied to coastal waters. A new empirical method based on neural networks has been developed using a relationship between the remote-sensing reflectances between 412 and 670 nm and Kd(490), for the SeaWiFS ocean color remote sensor. The architecture of the neural network has been defined using synthetical and in situ dataset and the optimal design is a tow hidden layer neural network with 4 neurons of the first layer and three on the second layer. The comparison with the SeaWiFS empirical algorithms shows similar retrievals accuracies for low values of Kd(490) (i.e. <0.20 m-1) and better estimates for greater values of and Kd(490). The new model is suitable for open water but also for turbid waters and does not show the limitations of the empirical method. The new model is more general that the empirical methods.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Laboratoire d'Océanologie et de Géosciences (LOG) - UMR 8187
Source :
Harvested from HAL
Université de Lille

Mentions légales
Université de Lille © 2017