Scaling of maximum probability density ...
Type de document :
Article dans une revue scientifique
DOI :
Titre :
Scaling of maximum probability density functions of velocity and temperature increments in turbulent systems
Auteur(s) :
Huang, Y.X [Auteur]
Schmitt, François G [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Zhou, Q. [Auteur]
Qiu, X. [Auteur]
Shang, X. D. [Auteur]
Lu, Z. M. [Auteur]
Liu, y L [Auteur]
Schmitt, François G [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Zhou, Q. [Auteur]
Qiu, X. [Auteur]
Shang, X. D. [Auteur]
Lu, Z. M. [Auteur]
Liu, y L [Auteur]
Titre de la revue :
Physics of Fluids
Pagination :
9
Éditeur :
American Institute of Physics
Date de publication :
2011-12-05
ISSN :
1070-6631
Discipline(s) HAL :
Planète et Univers [physics]/Sciences de la Terre/Océanographie
Résumé en anglais : [en]
In this paper, we introduce a new way to estimate the scaling parameter of a self-similar process by considering the maximum probability density function (pdf) of its increments. We prove this for H-self-similar processes ...
Lire la suite >In this paper, we introduce a new way to estimate the scaling parameter of a self-similar process by considering the maximum probability density function (pdf) of its increments. We prove this for H-self-similar processes in general and experimentally investigate it for turbulent velocity and temperature increments. We consider turbulent velocity database from an experimental homogeneous and nearly isotropic turbulent channel flow, and temperature data set obtained near the sidewall of a Rayleigh-Bénard convection cell, where the turbulent flow is driven by buoyancy. For the former database, it is found that the maximum value of increment pdf pmax(τ) is in a good agreement with lognormal distribution. We also obtain a scaling exponent α ≃ 0.37, which is consistent with the scaling exponent for the first-order structure function reported in other studies. For the latter one, we obtain a scaling exponent αθ ≃ 0.33. This index value is consistent with the Kolmogorov-Obukhov-Corrsin scaling for passive scalar turbulence but different from the scaling exponent of the first-order structure function that is found to be ζθ(1) ≃ 0.19, which is in favor of Bolgiano-Obukhov scaling. A possible explanation for these results is also givenLire moins >
Lire la suite >In this paper, we introduce a new way to estimate the scaling parameter of a self-similar process by considering the maximum probability density function (pdf) of its increments. We prove this for H-self-similar processes in general and experimentally investigate it for turbulent velocity and temperature increments. We consider turbulent velocity database from an experimental homogeneous and nearly isotropic turbulent channel flow, and temperature data set obtained near the sidewall of a Rayleigh-Bénard convection cell, where the turbulent flow is driven by buoyancy. For the former database, it is found that the maximum value of increment pdf pmax(τ) is in a good agreement with lognormal distribution. We also obtain a scaling exponent α ≃ 0.37, which is consistent with the scaling exponent for the first-order structure function reported in other studies. For the latter one, we obtain a scaling exponent αθ ≃ 0.33. This index value is consistent with the Kolmogorov-Obukhov-Corrsin scaling for passive scalar turbulence but different from the scaling exponent of the first-order structure function that is found to be ζθ(1) ≃ 0.19, which is in favor of Bolgiano-Obukhov scaling. A possible explanation for these results is also givenLire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Fichiers
- http://arxiv.org/pdf/1401.4207
- Accès libre
- Accéder au document
- 1401.4207
- Accès libre
- Accéder au document