• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire d'Océanologie et de Géosciences (LOG) - UMR 8187
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire d'Océanologie et de Géosciences (LOG) - UMR 8187
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Autocorrelation function of velocity ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
Permalink :
http://hdl.handle.net/20.500.12210/73122
Title :
Autocorrelation function of velocity increments time series in fully developed turbulence
Author(s) :
Huang, Yongxiang [Auteur]
Schmitt, François G [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Lu, Z.M. [Auteur]
Liu, Yl [Auteur]
Journal title :
EPL - Europhysics Letters
Pages :
40010, 2009.
Publisher :
European Physical Society/EDP Sciences/Società Italiana di Fisica/IOP Publishing
Publication date :
2009
ISSN :
0295-5075
English abstract : [en]
In fully developed turbulence, the velocity field possesses long-range correlations, denoted by a scaling power spectrum or structure functions. Here we consider the autocorrelation function of velocity increment Δu ℓ (t) ...
Show more >
In fully developed turbulence, the velocity field possesses long-range correlations, denoted by a scaling power spectrum or structure functions. Here we consider the autocorrelation function of velocity increment Δu ℓ (t) at separation {time} ℓ . Anselmet et al. [Anselmet et al. J. Fluid Mech. \textbf{140}, 63 (1984)] have found that the autocorrelation function of velocity increment has a minimum value, whose location is approximately equal to ℓ . Taking statistical stationary assumption, we link the velocity increment and the autocorrelation function with the power spectrum of the original variable. We then propose an analytical model of the autocorrelation function. With this model, we prove that the location of the minimum autocorrelation function is exactly equal to the separation {time} ℓ when the scaling of the power spectrum of the original variable belongs to the range 0<β<2 . This model also suggests a power law expression for the minimum autocorrelation. Considering the cumulative function of the autocorrelation function, it is shown that the main contribution to the autocorrelation function comes from the large scale part. Finally we argue that the autocorrelation function is a better indicator of the inertial range than the second order structure functionShow less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Laboratoire d'Océanologie et de Géosciences (LOG) - UMR 8187
Source :
Harvested from HAL
Submission date :
2022-04-08T07:19:49Z
Université de Lille

Mentions légales
Université de Lille © 2017