• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) - UMR 8523
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) - UMR 8523
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Localization properties of the asymptotic ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Pré-publication ou Document de travail
Permalink :
http://hdl.handle.net/20.500.12210/73269
Title :
Localization properties of the asymptotic density distribution of a one-dimensional disordered system
Author(s) :
Hainaut, Clément [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Clément, Jean-François [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Szriftgiser, Pascal [Auteur] refId
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Garreau, Jean Claude [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Rançon, Adam [Auteur] refId
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Chicireanu, Radu [Auteur] refId
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
English keyword(s) :
dimension
1
localization
statistical
density
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]
Physique [physics]/Physique Quantique [quant-ph]
English abstract : [en]
Anderson localization is the ubiquitous phenomenon of inhibition of transport of classical and quantum waves in a disordered medium. In dimension one, it is well known that all states are localized, implying that the ...
Show more >
Anderson localization is the ubiquitous phenomenon of inhibition of transport of classical and quantum waves in a disordered medium. In dimension one, it is well known that all states are localized, implying that the distribution of an initially narrow wave-packet released in a disordered potential will, at long time, decay exponentially on the scale of the localization length. However, the exact shape of the stationary localized distribution differs from a purely exponential profile and has been computed almost fifty years ago by Gogolin. Using the atomic quantum kicked rotor, a paradigmatic quantum simulator of Anderson localization physics, we study this asymptotic distribution by two complementary approaches. First, we discuss the connection of the statistical properties of the system's localized eigenfunctions and their exponential decay with the localization length of the Gogolin distribution. Next, we make use of our experimental platform, realizing an ideal Floquet disordered system, to measure the long-time probability distribution and highlight the very good agreement with the analytical prediction compared to the purely exponential one over 3 orders of magnitude.Show less >
Language :
Anglais
Collections :
  • Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) - UMR 8523
Source :
Harvested from HAL
Submission date :
2022-04-09T03:41:00Z
Files
Thumbnail
  • http://arxiv.org/pdf/2203.08495
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017