Atomic Layer Deposition of Functional ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Atomic Layer Deposition of Functional Layers for on Chip 3D Li-Ion All Solid State Microbattery
Author(s) :
Letiche, Manon [Auteur]
Matériaux divisés, interfaces, réactivité, électrochimie [MADIREL]
Eustache, Etienne [Auteur]
Institut des Matériaux Jean Rouxel [IMN]
Freixas, Jeremy [Auteur]
Ecole Polytechnique de l'Université de Nantes [EPUN]
Demortière, Arnaud [Auteur]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 UPJV [LRCS]
de Andrade, Vincent [Auteur]
Laboratoire Educations et Pratiques de Santé [LEPS]
Morgenroth, Laurence [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Tilmant, Pascal [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vaurette, Francois [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Troadec, David [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Brousse, Thierry [Auteur]
Institut des Matériaux de Nantes Jean Rouxel [IMN]
Lethien, Christophe [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Matériaux divisés, interfaces, réactivité, électrochimie [MADIREL]
Eustache, Etienne [Auteur]
Institut des Matériaux Jean Rouxel [IMN]
Freixas, Jeremy [Auteur]
Ecole Polytechnique de l'Université de Nantes [EPUN]
Demortière, Arnaud [Auteur]
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 UPJV [LRCS]
de Andrade, Vincent [Auteur]
Laboratoire Educations et Pratiques de Santé [LEPS]
Morgenroth, Laurence [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Tilmant, Pascal [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Vaurette, Francois [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Troadec, David [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Roussel, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Brousse, Thierry [Auteur]
Institut des Matériaux de Nantes Jean Rouxel [IMN]
Lethien, Christophe [Auteur]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Journal title :
Advanced Energy Materials
Publisher :
Wiley-VCH Verlag
Publication date :
2016-10-11
ISSN :
1614-6832
English keyword(s) :
Atomic Layer Depostion
solid electrolyte
3D microbattery
double microtube
solid electrolyte
3D microbattery
double microtube
HAL domain(s) :
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
English abstract : [en]
Nowadays, millimeter scale power sources are key devices for providing autonomy to smart, connected, and miniaturized sensors. However, until now, planar solid state microbatteries do not yet exhibit a sufficient surface ...
Show more >Nowadays, millimeter scale power sources are key devices for providing autonomy to smart, connected, and miniaturized sensors. However, until now, planar solid state microbatteries do not yet exhibit a sufficient surface energy density. In that context, architectured 3D microbatteries appear therefore to be a good solution to improve the material mass loading while keeping small the footprint area. Beside the design itself of the 3D microbaterry, one important technological barrier to address is the conformal deposition of thin films (lithiated or not) on 3D structures. For that purpose, atomic layer deposition (ALD) technology is a powerful technique that enables conformal coatings of thin film on complex substrate. An original, robust, and highly efficient 3D scaffold is proposed to significantly improve the geometrical surface of miniaturized 3D microbattery. Four functional layers composing the 3D lithium ion microbattery stacking has been successfully deposited on simple and double microtubes 3D templates. In depth synchrotron X-ray nanotomography and high angle annular dark field transmission electron microscope analyses are used to study the interface between each layer. For the first time, using ALD, anatase TiO2 negative electrode is coated on 3D tubes with Li3PO4 lithium phosphate as electrolyte, opening the way to all solid-state 3D microbatteries. The surface capacity is significantly increased by the proposed topology (high area enlargement factor – “thick” 3D layer), from 3.5 μA h cm−2 for a planar layer up to 0.37 mA h cm−2 for a 3D thin film (105 times higher).Show less >
Show more >Nowadays, millimeter scale power sources are key devices for providing autonomy to smart, connected, and miniaturized sensors. However, until now, planar solid state microbatteries do not yet exhibit a sufficient surface energy density. In that context, architectured 3D microbatteries appear therefore to be a good solution to improve the material mass loading while keeping small the footprint area. Beside the design itself of the 3D microbaterry, one important technological barrier to address is the conformal deposition of thin films (lithiated or not) on 3D structures. For that purpose, atomic layer deposition (ALD) technology is a powerful technique that enables conformal coatings of thin film on complex substrate. An original, robust, and highly efficient 3D scaffold is proposed to significantly improve the geometrical surface of miniaturized 3D microbattery. Four functional layers composing the 3D lithium ion microbattery stacking has been successfully deposited on simple and double microtubes 3D templates. In depth synchrotron X-ray nanotomography and high angle annular dark field transmission electron microscope analyses are used to study the interface between each layer. For the first time, using ALD, anatase TiO2 negative electrode is coated on 3D tubes with Li3PO4 lithium phosphate as electrolyte, opening the way to all solid-state 3D microbatteries. The surface capacity is significantly increased by the proposed topology (high area enlargement factor – “thick” 3D layer), from 3.5 μA h cm−2 for a planar layer up to 0.37 mA h cm−2 for a 3D thin film (105 times higher).Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03192855/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03192855/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03192855/document
- Open access
- Access the document
- document
- Open access
- Access the document
- version%20Hal.pdf
- Open access
- Access the document
- version%20Hal.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- version%20Hal.pdf
- Open access
- Access the document