GRAPHYP: A Scientific Knowledge Graph with ...
Type de document :
Pré-publication ou Document de travail
Titre :
GRAPHYP: A Scientific Knowledge Graph with Manifold Subnetworks of Communities. Detection of Scholarly Disputes in Adversarial Information Routes
Auteur(s) :
Fabre, Renaud [Auteur]
Laboratoire d'Economie Dionysien [LED]
Azeroual, Otmane [Auteur]
Bellot, Patrice [Auteur]
Laboratoire d'Informatique et des Systèmes (LIS) (Marseille, Toulon) [LIS]
Schopfel, Joachim [Auteur]
Groupe d'Études et de Recherche Interdisciplinaire en Information et COmmunication - ULR 4073 [GERIICO ]
Egret, Daniel [Auteur]
Université Paris Sciences et Lettres [PSL]
Laboratoire d'Economie Dionysien [LED]
Azeroual, Otmane [Auteur]
Bellot, Patrice [Auteur]
Laboratoire d'Informatique et des Systèmes (LIS) (Marseille, Toulon) [LIS]
Schopfel, Joachim [Auteur]

Groupe d'Études et de Recherche Interdisciplinaire en Information et COmmunication - ULR 4073 [GERIICO ]
Egret, Daniel [Auteur]
Université Paris Sciences et Lettres [PSL]
Mot(s)-clé(s) en anglais :
community detection
cognitive manifolds
graph completion
graph subnetwork
model interpretability
meta learning
search history
entity alignment
multiplex
cognitive manifolds
graph completion
graph subnetwork
model interpretability
meta learning
search history
entity alignment
multiplex
Discipline(s) HAL :
Sciences de l'Homme et Société/Sciences de l'information et de la communication
Informatique [cs]/Intelligence artificielle [cs.AI]
Informatique [cs]/Intelligence artificielle [cs.AI]
Résumé en anglais : [en]
The cognitive manifold of published content is currently expanding in all areas of science. However, Scientific Knowledge Graphs (SKGs) only provide poor pictures of the adversarial directions and scientific controversies ...
Lire la suite >The cognitive manifold of published content is currently expanding in all areas of science. However, Scientific Knowledge Graphs (SKGs) only provide poor pictures of the adversarial directions and scientific controversies that feed the production of knowledge. In this Article, we tackle the understanding of the design of the information space of a cognitive representation of research activities, and of related bottlenecks that affect search interfaces, in the mapping of structured objects into graphs. We propose, with SKG GRAPHYP, a novel graph designed geometric architecture which optimizes both the detection of the knowledge manifold of "cognitive communities", and the representation of alternative paths to adversarial answers to a research question, for instance in the context of academic disputes. With a methodology for designing "Manifold Subnetworks of Cognitive Communities", GRAPHYP provides a classification of distinct search paths in a research field. Users are detected from the variety of their search practices and classified in "Cognitive communities" from the analysis of the search history of their logs of scientific documentation. The manifold of practices is expressed from metrics of differentiated uses by triplets of nodes shaped into symmetrical graph subnetworks, with the following three parameters: Mass, Intensity, and Variety.Lire moins >
Lire la suite >The cognitive manifold of published content is currently expanding in all areas of science. However, Scientific Knowledge Graphs (SKGs) only provide poor pictures of the adversarial directions and scientific controversies that feed the production of knowledge. In this Article, we tackle the understanding of the design of the information space of a cognitive representation of research activities, and of related bottlenecks that affect search interfaces, in the mapping of structured objects into graphs. We propose, with SKG GRAPHYP, a novel graph designed geometric architecture which optimizes both the detection of the knowledge manifold of "cognitive communities", and the representation of alternative paths to adversarial answers to a research question, for instance in the context of academic disputes. With a methodology for designing "Manifold Subnetworks of Cognitive Communities", GRAPHYP provides a classification of distinct search paths in a research field. Users are detected from the variety of their search practices and classified in "Cognitive communities" from the analysis of the search history of their logs of scientific documentation. The manifold of practices is expressed from metrics of differentiated uses by triplets of nodes shaped into symmetrical graph subnetworks, with the following three parameters: Mass, Intensity, and Variety.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- https://hal.univ-lille.fr/hal-03656718/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/2205.01331
- Accès libre
- Accéder au document
- https://hal.univ-lille.fr/hal-03656718/document
- Accès libre
- Accéder au document
- https://hal.univ-lille.fr/hal-03656718/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- GRPHYP%20FINAL%20QSS.PDF
- Accès libre
- Accéder au document
- 2205.01331
- Accès libre
- Accéder au document