Deformation and slip systems of CaCl2-type ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Deformation and slip systems of CaCl2-type MnO2 under high pressure
Auteur(s) :
Yue, Binbin [Auteur]
Krug, Matthias [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Unité Matériaux et Transformations (UMET) - UMR 8207
Sanchez-Valle, Carmen [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hong, Fang [Auteur]
Sanchez-Valle, Carmen [Auteur]
Krug, Matthias [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Unité Matériaux et Transformations (UMET) - UMR 8207
Sanchez-Valle, Carmen [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hong, Fang [Auteur]
Sanchez-Valle, Carmen [Auteur]
Titre de la revue :
Physical Review Materials
Nom court de la revue :
Phys. Rev. Materials
Numéro :
6
Pagination :
053603
Éditeur :
American Physical Society (APS)
Date de publication :
2022-05-03
ISSN :
2475-9953
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Résumé en anglais : [en]
Many nonmetals and metal dioxides MO2, including the dense form of SiO2 stishovite, crystalize in a rutile structure at low pressure and transform to a denser CaCl2 structure under high pressure. Structures and transformations ...
Lire la suite >Many nonmetals and metal dioxides MO2, including the dense form of SiO2 stishovite, crystalize in a rutile structure at low pressure and transform to a denser CaCl2 structure under high pressure. Structures and transformations in MO2 dioxides hence serve as an archetype for applications in materials science and inside the Earth and terrestrial planets. Despite its significance, however, the deformation behavior of MO2 compounds in the CaCl2 structure is very poorly constrained. Here we use radial x-ray diffraction in a diamond-anvil cell and study MnO2 as a representative system of the MO2 family. We identify the dominant slip systems and constrain texture evolution in CaCl2-structured phases. After phase transition to a CaCl2 structure above 3.5 GPa, the dominant (010)[100] and secondary {110}[001] and {011}[0-11] slip systems induce a 121 texture in compression. Further compression increases the activity of the {011}⟨0−11⟩ slip system, with an enhanced 001 texture at ∼50GPa. During pressure release, the 001 texture becomes dominant over the original 121 texture. This clearly demonstrates the effect of pressure on the deformation behavior and slip systems of CaCl2-structured dioxides. Finally, MnO2 transforms back to a rutile structure upon pressure release, with a significant orientation memory, highlighting the martensitic nature of the CaCl2 to rutile structural transformation. These findings provide key guidance regarding the plasticity of CaCl2-structured dioxides, with implications in materials and Earth and planetary science.Lire moins >
Lire la suite >Many nonmetals and metal dioxides MO2, including the dense form of SiO2 stishovite, crystalize in a rutile structure at low pressure and transform to a denser CaCl2 structure under high pressure. Structures and transformations in MO2 dioxides hence serve as an archetype for applications in materials science and inside the Earth and terrestrial planets. Despite its significance, however, the deformation behavior of MO2 compounds in the CaCl2 structure is very poorly constrained. Here we use radial x-ray diffraction in a diamond-anvil cell and study MnO2 as a representative system of the MO2 family. We identify the dominant slip systems and constrain texture evolution in CaCl2-structured phases. After phase transition to a CaCl2 structure above 3.5 GPa, the dominant (010)[100] and secondary {110}[001] and {011}[0-11] slip systems induce a 121 texture in compression. Further compression increases the activity of the {011}⟨0−11⟩ slip system, with an enhanced 001 texture at ∼50GPa. During pressure release, the 001 texture becomes dominant over the original 121 texture. This clearly demonstrates the effect of pressure on the deformation behavior and slip systems of CaCl2-structured dioxides. Finally, MnO2 transforms back to a rutile structure upon pressure release, with a significant orientation memory, highlighting the martensitic nature of the CaCl2 to rutile structural transformation. These findings provide key guidance regarding the plasticity of CaCl2-structured dioxides, with implications in materials and Earth and planetary science.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Date de dépôt :
2022-05-05T11:05:12Z
2022-05-05T21:12:05Z
2022-05-05T21:14:41Z
2022-05-10T10:18:43Z
2022-05-05T21:12:05Z
2022-05-05T21:14:41Z
2022-05-10T10:18:43Z
Fichiers
- yue2022prm.pdf
- Version éditeur
- Accès restreint
- Accéder au document