Deformation and slip systems of CaCl2-type ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Deformation and slip systems of CaCl2-type MnO2 under high pressure
Author(s) :
Yue, Binbin [Auteur]
Krug, Matthias [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Unité Matériaux et Transformations (UMET) - UMR 8207
Sanchez-Valle, Carmen [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hong, Fang [Auteur]
Sanchez-Valle, Carmen [Auteur]
Krug, Matthias [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Unité Matériaux et Transformations (UMET) - UMR 8207
Sanchez-Valle, Carmen [Auteur]
Westfälische Wilhelms-Universität Münster = University of Münster [WWU]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations (UMET) - UMR 8207
Hong, Fang [Auteur]
Sanchez-Valle, Carmen [Auteur]
Journal title :
Physical Review Materials
Abbreviated title :
Phys. Rev. Materials
Volume number :
6
Pages :
053603
Publisher :
American Physical Society (APS)
Publication date :
2022-05-03
ISSN :
2475-9953
HAL domain(s) :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
English abstract : [en]
Many nonmetals and metal dioxides MO2, including the dense form of SiO2 stishovite, crystalize in a rutile structure at low pressure and transform to a denser CaCl2 structure under high pressure. Structures and transformations ...
Show more >Many nonmetals and metal dioxides MO2, including the dense form of SiO2 stishovite, crystalize in a rutile structure at low pressure and transform to a denser CaCl2 structure under high pressure. Structures and transformations in MO2 dioxides hence serve as an archetype for applications in materials science and inside the Earth and terrestrial planets. Despite its significance, however, the deformation behavior of MO2 compounds in the CaCl2 structure is very poorly constrained. Here we use radial x-ray diffraction in a diamond-anvil cell and study MnO2 as a representative system of the MO2 family. We identify the dominant slip systems and constrain texture evolution in CaCl2-structured phases. After phase transition to a CaCl2 structure above 3.5 GPa, the dominant (010)[100] and secondary {110}[001] and {011}[0-11] slip systems induce a 121 texture in compression. Further compression increases the activity of the {011}⟨0−11⟩ slip system, with an enhanced 001 texture at ∼50GPa. During pressure release, the 001 texture becomes dominant over the original 121 texture. This clearly demonstrates the effect of pressure on the deformation behavior and slip systems of CaCl2-structured dioxides. Finally, MnO2 transforms back to a rutile structure upon pressure release, with a significant orientation memory, highlighting the martensitic nature of the CaCl2 to rutile structural transformation. These findings provide key guidance regarding the plasticity of CaCl2-structured dioxides, with implications in materials and Earth and planetary science.Show less >
Show more >Many nonmetals and metal dioxides MO2, including the dense form of SiO2 stishovite, crystalize in a rutile structure at low pressure and transform to a denser CaCl2 structure under high pressure. Structures and transformations in MO2 dioxides hence serve as an archetype for applications in materials science and inside the Earth and terrestrial planets. Despite its significance, however, the deformation behavior of MO2 compounds in the CaCl2 structure is very poorly constrained. Here we use radial x-ray diffraction in a diamond-anvil cell and study MnO2 as a representative system of the MO2 family. We identify the dominant slip systems and constrain texture evolution in CaCl2-structured phases. After phase transition to a CaCl2 structure above 3.5 GPa, the dominant (010)[100] and secondary {110}[001] and {011}[0-11] slip systems induce a 121 texture in compression. Further compression increases the activity of the {011}⟨0−11⟩ slip system, with an enhanced 001 texture at ∼50GPa. During pressure release, the 001 texture becomes dominant over the original 121 texture. This clearly demonstrates the effect of pressure on the deformation behavior and slip systems of CaCl2-structured dioxides. Finally, MnO2 transforms back to a rutile structure upon pressure release, with a significant orientation memory, highlighting the martensitic nature of the CaCl2 to rutile structural transformation. These findings provide key guidance regarding the plasticity of CaCl2-structured dioxides, with implications in materials and Earth and planetary science.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Matériaux Terrestres et Planétaires
Submission date :
2022-05-05T11:05:12Z
2022-05-05T21:12:05Z
2022-05-05T21:14:41Z
2022-05-10T10:18:43Z
2022-05-05T21:12:05Z
2022-05-05T21:14:41Z
2022-05-10T10:18:43Z
Files
- yue2022prm.pdf
- Version éditeur
- Restricted access
- Access the document