Deformation of Polycrystalline MgO Up to ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Deformation of Polycrystalline MgO Up to 8.3 GPa and 1270 K: Microstructures, Dominant Slip-Systems, and Transition to Grain Boundary Sliding
Auteur(s) :
Ledoux, Estelle [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Lin, Feng [Auteur]
University of Utah
Miyagi, Lowell [Auteur]
University of Utah
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Fadel, Alexandre [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Jacob, Damien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
béclin, franck [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Lin, Feng [Auteur]
University of Utah
Miyagi, Lowell [Auteur]
University of Utah
Addad, Ahmed [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Fadel, Alexandre [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Jacob, Damien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
béclin, franck [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Merkel, Sébastien [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Titre de la revue :
Frontiers in Earth Science
Nom court de la revue :
Front. Earth Sci.
Numéro :
10
Pagination :
849777
Éditeur :
Frontiers Media SA
Date de publication :
2022-05-09
ISSN :
2296-6463
Mot(s)-clé(s) en anglais :
MgO
deformation
electron microscopy
slip systems
grain boundary sliding
lattice preferred orientation
lower mantle
anisotropy
deformation
electron microscopy
slip systems
grain boundary sliding
lattice preferred orientation
lower mantle
anisotropy
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Résumé en anglais : [en]
Ferropericlase is the second most abundant mineral in the Earth’s lower mantle and its mechanical properties have a strong influence on the rheology of this region. Here, we deform polycrystalline MgO, the magnesium ...
Lire la suite >Ferropericlase is the second most abundant mineral in the Earth’s lower mantle and its mechanical properties have a strong influence on the rheology of this region. Here, we deform polycrystalline MgO, the magnesium end-member of ferropericlase, at conditions ranging from 1.6 to 8.3 GPa and 875–1,270 K. We analyse the flow laws and microstructures of the recovered samples using electron microscopy and compare our observations with predictions from the literature. We identify a first mechanism for samples deformed at 1,270 K, attributed to a regime controlled by grain boundary sliding accommodated by diffusion, and characterized by a small grain size, an absence of texture, and no intracrystalline deformation. At 1,070 K and below, the deformation regime is controlled by dislocations. The samples show a more homogeneous grain size distribution, significant texture, and intracrystalline strains. In this regime, deformation is controlled by the ⟨110⟩{110} slip system and a combined ⟨110⟩{110} and ⟨110⟩{100} slip, depending on pressure and temperature. Based on these results, we propose an updated deformation map for polycrystalline MgO at mantle conditions. The implications for ferropericlase and seismic observations in the Earth’s lower mantle are discussed.Lire moins >
Lire la suite >Ferropericlase is the second most abundant mineral in the Earth’s lower mantle and its mechanical properties have a strong influence on the rheology of this region. Here, we deform polycrystalline MgO, the magnesium end-member of ferropericlase, at conditions ranging from 1.6 to 8.3 GPa and 875–1,270 K. We analyse the flow laws and microstructures of the recovered samples using electron microscopy and compare our observations with predictions from the literature. We identify a first mechanism for samples deformed at 1,270 K, attributed to a regime controlled by grain boundary sliding accommodated by diffusion, and characterized by a small grain size, an absence of texture, and no intracrystalline deformation. At 1,070 K and below, the deformation regime is controlled by dislocations. The samples show a more homogeneous grain size distribution, significant texture, and intracrystalline strains. In this regime, deformation is controlled by the ⟨110⟩{110} slip system and a combined ⟨110⟩{110} and ⟨110⟩{100} slip, depending on pressure and temperature. Based on these results, we propose an updated deformation map for polycrystalline MgO at mantle conditions. The implications for ferropericlase and seismic observations in the Earth’s lower mantle are discussed.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Établissement(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Équipe(s) de recherche :
Matériaux Terrestres et Planétaires
Métallurgie Physique et Génie des Matériaux
Métallurgie Physique et Génie des Matériaux
Date de dépôt :
2022-05-09T07:50:53Z
2022-05-10T15:17:27Z
2022-05-10T15:17:27Z
Fichiers
- ledoux2022fes.pdf
- Version éditeur
- Accès libre
- Accéder au document