• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire d'Océanologie et de Géosciences (LOG) - UMR 8187
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire d'Océanologie et de Géosciences (LOG) - UMR 8187
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An algorithm for the direct estimation of ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1140/epjp/s13360-021-02237-7
Title :
An algorithm for the direct estimation of the parameters of the SIR epidemic model from the I(t) dynamics
Author(s) :
Schmitt, François G. [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Journal title :
The European Physical Journal Plus
Publisher :
Springer
Publication date :
2022
ISSN :
2190-5444
HAL domain(s) :
Planète et Univers [physics]
English abstract : [en]
The discrete SIR (Susceptible-Infected-Recovered) model is used in many studies to model the evolution of epidemics. Here, we consider one of its dynamics—the exponential decrease in infected cases I(t). By considering ...
Show more >
The discrete SIR (Susceptible-Infected-Recovered) model is used in many studies to model the evolution of epidemics. Here, we consider one of its dynamics—the exponential decrease in infected cases I(t). By considering only the I(t) dynamics, we extract three parameters: the exponent of the initial exponential increase γ ; the maximum value I<SUB>max</SUB>; and the exponent of the final decrease Γ . From these three parameters, we show mathematically how to extract all relevant parameters of the SIR model. We test this procedure on numerical data and then apply the methodology to real data received from the COVID-19 situation in France. We conclude that, based on the hospitalized data and the ICU (Intensive Care Unit) cases, two exponentials are found, for the initial increase and the decrease in I(t). The parameters found are larger than reported in the literature, and they are associated with a susceptible population which is limited to a sub-sample of the total population. This may be due to the fact that the SIR model cannot be applied to the covid-19 case, due to its strong hypotheses such as mixing of all the population, or also to the fact that the parameters have changed over time, due to the political initiatives such as social distanciation and lockdown.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Laboratoire d'Océanologie et de Géosciences (LOG) - UMR 8187
Source :
Harvested from HAL
Files
Thumbnail
  • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696977/pdf
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017