• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multivariate Side-Informed Gaussian Embedding ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique
DOI :
10.1109/TIFS.2022.3173184
Title :
Multivariate Side-Informed Gaussian Embedding Minimizing Statistical Detectability
Author(s) :
Giboulot, Quentin [Auteur]
Laboratoire Modélisation et Sûreté des Systèmes [LM2S]
Bas, Patrick [Auteur] refId
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Cogranne, Rémi [Auteur]
Laboratoire Modélisation et Sûreté des Systèmes [LM2S]
Journal title :
IEEE Transactions on Information Forensics and Security
Pages :
1841 - 1854
Publisher :
Institute of Electrical and Electronics Engineers
Publication date :
2022
ISSN :
1556-6013
English keyword(s) :
Steganography
JPEG images
hypothesis testing
statistical modeling
HAL domain(s) :
Informatique [cs]/Cryptographie et sécurité [cs.CR]
Mathématiques [math]/Statistiques [math.ST]
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
English abstract : [en]
Steganography schemes based on a deflection criterion for embedding posses a clear advantage against schemes based on heuristics as they provide a direct link between theoretical detectability and empirical performance. ...
Show more >
Steganography schemes based on a deflection criterion for embedding posses a clear advantage against schemes based on heuristics as they provide a direct link between theoretical detectability and empirical performance. However, this advantage depends on the accuracy of the cover and stego model underlying the embedding scheme. In this work we propose an original steganography scheme based on a realistic model of sensor noise, taking into account the camera model, the ISO setting and the processing pipeline. Exploiting this statistical model allows us to take correlations between DCT coefficients into account. Several types of dependency models are presented, including a very general lattice model which accurately models dependencies introduced by a large class of processing pipelines of interest. We show in particular that the stego signal which minimizes the KL divergence under this model has a covariance proportional to the cover noise covariance. The resulting embedding scheme achieves state-of-the-art performances which go well beyond the current standards in side-informed JPEG steganography.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Utilisation de grandes bases d'images hétérogènes en stéganalyse pour se rapprocher d'un contexte opérationnel
Protection contre les usages criminels de la stéganographie
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal-utt.archives-ouvertes.fr/hal-03663628/document
  • Open access
  • Access the document
Thumbnail
  • https://hal-utt.archives-ouvertes.fr/hal-03663628/document
  • Open access
  • Access the document
Thumbnail
  • https://hal-utt.archives-ouvertes.fr/hal-03663628/document
  • Open access
  • Access the document
Thumbnail
  • https://hal-utt.archives-ouvertes.fr/hal-03663628/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017