Enhanced Near-Infrared Photoresponse for ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Enhanced Near-Infrared Photoresponse for Efficient Organic Solar Cells Using Hybrid Plasmonic Nanostructures
Auteur(s) :
Zhao, Yanglin [Auteur]
Luo, Yiran [Auteur]
Wu, Shiwei [Auteur]
Laboratoire « Lieux, Identités, eSpaces, Activités » (UMR CNRS 6240 LISA) [LISA]
Wang, Chi [Auteur]
Ahmidayi, Najat [Auteur]
Leveque, Gaetan [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Portier, Xavier [Auteur]
Nanomatériaux, Ions et Métamatériaux pour la Photonique [NIMPH]
Centre de recherche sur les Ions, les MAtériaux et la Photonique [CIMAP - UMR 6252]
Xu, Tao [Auteur]
Luo, Yiran [Auteur]
Wu, Shiwei [Auteur]
Laboratoire « Lieux, Identités, eSpaces, Activités » (UMR CNRS 6240 LISA) [LISA]
Wang, Chi [Auteur]
Ahmidayi, Najat [Auteur]
Leveque, Gaetan [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Physique - IEMN [PHYSIQUE - IEMN]
Portier, Xavier [Auteur]
Nanomatériaux, Ions et Métamatériaux pour la Photonique [NIMPH]
Centre de recherche sur les Ions, les MAtériaux et la Photonique [CIMAP - UMR 6252]
Xu, Tao [Auteur]
Titre de la revue :
Physica E: Low-dimensional Systems and Nanostructures
Pagination :
115534
Éditeur :
Elsevier
Date de publication :
2023-01
ISSN :
1386-9477
Mot(s)-clé(s) en anglais :
nonfullerene organic solar cells
plasmonic effect
hybrid gold nanostructures
near-infrared photoresponse
plasmonic effect
hybrid gold nanostructures
near-infrared photoresponse
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Optique / photonique
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Sciences de l'ingénieur [physics]/Electromagnétisme
Physique [physics]/Physique [physics]/Physique Numérique [physics.comp-ph]
Physique [physics]/Physique [physics]/Optique [physics.optics]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Chimie/Matériaux
Sciences de l'ingénieur [physics]/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Sciences de l'ingénieur [physics]/Electromagnétisme
Physique [physics]/Physique [physics]/Physique Numérique [physics.comp-ph]
Physique [physics]/Physique [physics]/Optique [physics.optics]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Chimie/Matériaux
Sciences de l'ingénieur [physics]/Matériaux
Résumé en anglais : [en]
Nonfullerene organic solar cells (OSCs) have recently made remarkable progress as one of the most promising next-generation photovoltaic technologies. Still, it is highly desirable to enhance the light harvesting for the ...
Lire la suite >Nonfullerene organic solar cells (OSCs) have recently made remarkable progress as one of the most promising next-generation photovoltaic technologies. Still, it is highly desirable to enhance the light harvesting for the sake of photoactive layer with a limited thickness. In this work, we developed efficient nonfullerene OSCs through incorporating hybrid plasmonic metal nanostructures (MNS) consisted of gold nanobipyramids (AuNBPs) and gold nanospheres (AuNSs). The synergistic localized surface plasmon resonance (LSPR) of hybrid MNS has been predesigned to perfectly match with the absorption range of nonfullerene photoactive layer especially in the near-infrared (NIR) region, subsequently delivering enhanced light harvesting and photo-response. The plasmonic enhancement mechanisms were systematically investigated by theoretical simulations and various experimental measurements, showing that hybrid MNS exhibited significant broadband near field enhancement and scattering effect as well as the advantage in electrical aspect to facilitate the charge extraction and transport. As a result, the power conversion efficiency (PCE) was improved from 15.46% to 16.62% for OSCs based on PM6:Y6 due to the synergistic plasmonic effect of hybrid MNS. Overall, this work paves the way for using plasmonic MNS with tunable optical properties as an alternative approach for the development of high-performance OSCs.Lire moins >
Lire la suite >Nonfullerene organic solar cells (OSCs) have recently made remarkable progress as one of the most promising next-generation photovoltaic technologies. Still, it is highly desirable to enhance the light harvesting for the sake of photoactive layer with a limited thickness. In this work, we developed efficient nonfullerene OSCs through incorporating hybrid plasmonic metal nanostructures (MNS) consisted of gold nanobipyramids (AuNBPs) and gold nanospheres (AuNSs). The synergistic localized surface plasmon resonance (LSPR) of hybrid MNS has been predesigned to perfectly match with the absorption range of nonfullerene photoactive layer especially in the near-infrared (NIR) region, subsequently delivering enhanced light harvesting and photo-response. The plasmonic enhancement mechanisms were systematically investigated by theoretical simulations and various experimental measurements, showing that hybrid MNS exhibited significant broadband near field enhancement and scattering effect as well as the advantage in electrical aspect to facilitate the charge extraction and transport. As a result, the power conversion efficiency (PCE) was improved from 15.46% to 16.62% for OSCs based on PM6:Y6 due to the synergistic plasmonic effect of hybrid MNS. Overall, this work paves the way for using plasmonic MNS with tunable optical properties as an alternative approach for the development of high-performance OSCs.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
SSRN preprint article https://ssrn.com/abstract=4108410
Source :