• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-Dimensional Data Learning Based on ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
High-Dimensional Data Learning Based on Tensorial-Singular Space of Tensor Train Cores
Author(s) :
Ouafae, Karmouda [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Boyer, Remy [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Jeremie, Boulanger [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Conference title :
EUSIPCO
City :
Belgrade
Start date of the conference :
2022-08-29
English keyword(s) :
Tensor Train Decomposition
subspaces
kernel
HAL domain(s) :
Sciences de l'ingénieur [physics]/Traitement du signal et de l'image [eess.SP]
Mathématiques [math]
English abstract : [en]
Tensors are multidimensional data structures used to represent many real world data. In the context of supervised learning, Support Vector Machines (SVMs) are known to be very efficient for different classification tasks. ...
Show more >
Tensors are multidimensional data structures used to represent many real world data. In the context of supervised learning, Support Vector Machines (SVMs) are known to be very efficient for different classification tasks. In this work, we propose a kernel metric for SVM to deal with non linear classification problems. First, we use the Tensor Train Decomposition (TTD) to decompose a tensor into TT-cores of order three and two matrices. In order to mitigate the problem of non-uniqueness of TTD, we propose a kernel based on the tensorial singular subspaces spanned by TT-cores. The TT-based kernel function proposed is based on the tools of t-Algebra of 3-rd order tensors. We also show that it is possible to use different kernel functions on each TT-core. Numerical experiments on real-world datasets show the competitivity of our approach compared to existing methods and the superiority of our method when dealing with few-sample of high-dimensional inputs.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.univ-lille.fr/hal-03672088/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.univ-lille.fr/hal-03672088/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.univ-lille.fr/hal-03672088/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017