Impact dynamics of the L chondrites' parent ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Permalink :
Title :
Impact dynamics of the L chondrites' parent asteroid
Author(s) :
Ciocco, Marine [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Roskosz, Mathieu [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Doisneau, Béatrice [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Beyssac, Olivier [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Mostefaoui, Smail [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Remusat, Laurent [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Leroux, Hugues [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Gounelle, Matthieu [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Roskosz, Mathieu [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Doisneau, Béatrice [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Beyssac, Olivier [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Mostefaoui, Smail [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Remusat, Laurent [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Leroux, Hugues [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Gounelle, Matthieu [Auteur]
Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC]
Journal title :
Meteoritics and Planetary Science
Abbreviated title :
Meteorit & Planet Sci
Volume number :
57
Pages :
759-775
Publisher :
Wiley
Publication date :
2022-02-24
ISSN :
1086-9379
HAL domain(s) :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
Physique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
Physique [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Astrophysique [astro-ph]
Planète et Univers [physics]/Sciences de la Terre
English abstract : [en]
The dynamics of collisional events have been studied for three highly shocked L chondrites (Tenham, Sixiangkou, and Acfer 040). Crystal growth rates of high-pressure polymorphs of olivines and pyroxenes and diffusion-driven ...
Show more >The dynamics of collisional events have been studied for three highly shocked L chondrites (Tenham, Sixiangkou, and Acfer 040). Crystal growth rates of high-pressure polymorphs of olivines and pyroxenes and diffusion-driven redistribution of Mn, Ca, Fe, and Na associated with these polymorphic transitions were studied independently. These two approaches were then applied on the same samples, and for meteorites that underwent different collisional histories. The relevance of the use of pyroxene polymorphs (e.g., akimotoite) is demonstrated. Combined analysis of the exact same ringwoodite and akimotoite crystals by scanning transmission electron microscopy (STEM) and NanoSIMS demonstrate that while STEM has a better lateral resolution, the 40 nm maximum resolution of the NanoSIMS is sufficient to distinguish and analyze diffusion profiles. With STEM chemical and structural information concerning the nucleation mechanisms of ringwoodite and akimotoite, the concentration profiles derived from NanoSIMS images were used to derive the shock pulse duration and impactor size for these three meteorites. The two approaches (crystal growth kinetics and elemental diffusion) provide comparable durations assuming that diffusion coefficients are carefully selected. We obtain shock time scales of 1, 7, and 4 s for Tenham, Sixiangkou, and Acfer 040, respectively. Corresponding impactor sizes are also calculated, and the results point toward either (i) an early separation of the L chondrites from the parent body, and secondary impacts resulting in the observed meteorites or (ii) the meteorites all originate from different depths in the parent body.Show less >
Show more >The dynamics of collisional events have been studied for three highly shocked L chondrites (Tenham, Sixiangkou, and Acfer 040). Crystal growth rates of high-pressure polymorphs of olivines and pyroxenes and diffusion-driven redistribution of Mn, Ca, Fe, and Na associated with these polymorphic transitions were studied independently. These two approaches were then applied on the same samples, and for meteorites that underwent different collisional histories. The relevance of the use of pyroxene polymorphs (e.g., akimotoite) is demonstrated. Combined analysis of the exact same ringwoodite and akimotoite crystals by scanning transmission electron microscopy (STEM) and NanoSIMS demonstrate that while STEM has a better lateral resolution, the 40 nm maximum resolution of the NanoSIMS is sufficient to distinguish and analyze diffusion profiles. With STEM chemical and structural information concerning the nucleation mechanisms of ringwoodite and akimotoite, the concentration profiles derived from NanoSIMS images were used to derive the shock pulse duration and impactor size for these three meteorites. The two approaches (crystal growth kinetics and elemental diffusion) provide comparable durations assuming that diffusion coefficients are carefully selected. We obtain shock time scales of 1, 7, and 4 s for Tenham, Sixiangkou, and Acfer 040, respectively. Corresponding impactor sizes are also calculated, and the results point toward either (i) an early separation of the L chondrites from the parent body, and secondary impacts resulting in the observed meteorites or (ii) the meteorites all originate from different depths in the parent body.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
INRAE
ENSCL
CNRS
INRAE
ENSCL
Collections :
Research team(s) :
Matériaux Terrestres et Planétaires
Research platform(s) :
Microscopie électronique
Submission date :
2022-06-09T10:26:26Z
2022-06-15T06:46:37Z
2022-06-22T09:35:35Z
2022-06-15T06:46:37Z
2022-06-22T09:35:35Z