• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
  • View Item
  •   LillOA Home
  • Liste des unités
  • Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Feature replacement methods enable reliable ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1038/s41598-020-76874-w
PMID :
33277527
Permalink :
http://hdl.handle.net/20.500.12210/75028
Title :
Feature replacement methods enable reliable home video analysis for machine learning detection of autism
Author(s) :
Leblanc, Emilie [Auteur]
Washington, Peter [Auteur]
Varma, Maya [Auteur]
Dunlap, Kaitlyn [Auteur]
Penev, Yordan [Auteur]
Kline, Aaron [Auteur]
Wall, Dennis P. [Auteur]
Journal title :
Scientific Reports
Abbreviated title :
Sci Rep
Volume number :
10
Pages :
21245
Publication date :
2020-12-04
ISSN :
2045-2322
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
Autism Spectrum Disorder is a neuropsychiatric condition affecting 53 million children worldwide and for which early diagnosis is critical to the outcome of behavior therapies. Machine learning applied to features manually ...
Show more >
Autism Spectrum Disorder is a neuropsychiatric condition affecting 53 million children worldwide and for which early diagnosis is critical to the outcome of behavior therapies. Machine learning applied to features manually extracted from readily accessible videos (e.g., from smartphones) has the potential to scale this diagnostic process. However, nearly unavoidable variability in video quality can lead to missing features that degrade algorithm performance. To manage this uncertainty, we evaluated the impact of missing values and feature imputation methods on two previously published autism detection classifiers, trained on standard-of-care instrument scoresheets and tested on ratings of 140 children videos from YouTube. We compare the baseline method of listwise deletion to classic univariate and multivariate techniques. We also introduce a feature replacement method that, based on a score, selects a feature from an expanded dataset to fill-in the missing value. The replacement feature selected can be identical for all records (general) or automatically adjusted to the record considered (dynamic). Our results show that general and dynamic feature replacement methods achieve a higher performance than classic univariate and multivariate methods, supporting the hypothesis that algorithmic management can maintain the fidelity of video-based diagnostics in the face of missing values and variable video quality.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
INSERM
Université de Lille
Collections :
  • Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U1192
Submission date :
2022-06-15T13:58:03Z
Université de Lille

Mentions légales
Université de Lille © 2017