• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Laboratoire Génie Civil et géo-Environnement (LGCgE) - ULR 4515
  • View Item
  •   LillOA Home
  • Liste des unités
  • Laboratoire Génie Civil et géo-Environnement (LGCgE) - ULR 4515
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A microstructure-based model for a full ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Article dans une revue scientifique: Article original
DOI :
10.1016/j.compbiomed.2021.104629
PMID :
34274895
Permalink :
http://hdl.handle.net/20.500.12210/75236
Title :
A microstructure-based model for a full lamellar-interlamellar displacement and shear strain mapping inside human intervertebral disc core
Author(s) :
Kandil, Karim [Auteur]
Zairi, Fahmi [Auteur] refId
Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 [LGCgE]
Messager, Tanguy [Auteur] refId
Unité de Mécanique de Lille - ULR 7512 [UML]
Zairi, Fahed [Auteur]
Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM) - U 1192 [PRISM]
Journal title :
Computers in biology and medicine
Abbreviated title :
Comput Biol Med
Volume number :
135
Pages :
104629
Publication date :
2021-07-05
ISSN :
1879-0534
Keyword(s) :
Local fields
Complex mechanical loading
Human spine unit
Volumetric strain
Microstructure
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
The determinant role of the annulus fibrosus interlamellar zones in the intervertebral disc transversal and volumetric responses and hence on their corresponding three-dimensional conducts have been only revealed and ...
Show more >
The determinant role of the annulus fibrosus interlamellar zones in the intervertebral disc transversal and volumetric responses and hence on their corresponding three-dimensional conducts have been only revealed and appreciated recently. Their consideration in disc modeling strategies has been proven to be essential for the reproduction of correct local strain and displacement fields inside the disc especially in the unconstrained directions of the disc. In addition, these zones are known to be the starting areas of annulus fibrosus circumferential tears and disc delamination failure mode, which is often judged as one of the most dangerous disc failure modes that could evolve with time leading to disc hernia. For this latter reason, the main goal of the current contribution is to incorporate physically for the first time, the interlamellar zones, at the scale of a complete human lumbar intervertebral disc, in order to allow a correct local vision and replication of the different lamellar-interlamellar interactions and an identification of the interlamellar critical zones. By means of a fully tridimensional chemo-viscoelastic constitutive model, which we implemented into a finite element code, the physical, mechanical and chemical contribution of the interlamellar zones is added to the disc. The chemical-induced volumetric response is accounted by the model for both the interlamellar zones and the lamellae using experimentally-based fluid kinetics. Computational simulations are performed and critically discussed upon different simple and complex physiological movements. The disc core and the interlamellar zones are numerically accessed, allowing the observation of the displacement and shear strain fields that are compared to direct MRI experiments from the literature. Important conclusions about the correct lamellar-interlamellar-nucleus interactions are provided thanks to the developed model. The critical interlamellar spots with the highest delamination potentials are defined, analyzed and related to the local kinetics and microstructure.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
CNRS
Centrale Lille
IMT Lille Douai
INSERM
Institut Catholique Lille
Univ. Artois
Université de Lille
Collections :
  • Laboratoire Génie Civil et géo-Environnement (LGCgE) - ULR 4515
  • Unité de Mécanique de Lille (UML) - ULR 7512
Submission date :
2022-06-15T14:00:24Z
Université de Lille

Mentions légales
Université de Lille © 2017