Towards 500GHz Non-Volatile Monolayer 6G Switches
Type de document :
Communication dans un congrès avec actes
Titre :
Towards 500GHz Non-Volatile Monolayer 6G Switches
Auteur(s) :
Kim, Myungsoo [Auteur]
Ulsan National Institute of Science and Technology [UNIST]
Ducournau, Guillaume [Auteur]
Photonique THz - IEMN [PHOTONIQUE THZ - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Skrzypczak, Simon [Auteur]
Carbon - IEMN [CARBON - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Szriftgiser, Pascal [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Yang, Sung Jin [Auteur]
University of Texas at Austin [Austin]
Wainstein, Nicolas [Auteur]
Technion - Israel Institute of Technology [Haifa]
Stern, Keren [Auteur]
Technion - Israel Institute of Technology [Haifa]
Happy, Henri [Auteur]
Carbon - IEMN [CARBON - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Yalon, Eilam [Auteur]
Technion - Israel Institute of Technology [Haifa]
Pallecchi, Emiliano [Auteur]
Carbon - IEMN [CARBON - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Akinwande, Deji [Auteur]
University of Texas at Austin [Austin]
Ulsan National Institute of Science and Technology [UNIST]
Ducournau, Guillaume [Auteur]

Photonique THz - IEMN [PHOTONIQUE THZ - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Skrzypczak, Simon [Auteur]
Carbon - IEMN [CARBON - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Szriftgiser, Pascal [Auteur]

Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Yang, Sung Jin [Auteur]
University of Texas at Austin [Austin]
Wainstein, Nicolas [Auteur]
Technion - Israel Institute of Technology [Haifa]
Stern, Keren [Auteur]
Technion - Israel Institute of Technology [Haifa]
Happy, Henri [Auteur]

Carbon - IEMN [CARBON - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Yalon, Eilam [Auteur]
Technion - Israel Institute of Technology [Haifa]
Pallecchi, Emiliano [Auteur]

Carbon - IEMN [CARBON - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Akinwande, Deji [Auteur]
University of Texas at Austin [Austin]
Titre de la manifestation scientifique :
2022 IEEE/MTT-S International Microwave Symposium, IMS 2022
Ville :
Denver
Pays :
Etats-Unis d'Amérique
Date de début de la manifestation scientifique :
2022-06-19
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
High performance non-volatile analog switches based on monolayer MoS₂ are realized up to 480 GHz, covering the sixth-generation (6G) communication band. Due to its robust layered structure, crystalline MoS₂ enables low ...
Lire la suite >High performance non-volatile analog switches based on monolayer MoS₂ are realized up to 480 GHz, covering the sixth-generation (6G) communication band. Due to its robust layered structure, crystalline MoS₂ enables low insertion loss and high isolation radio-frequency (RF) switch that utilizes its memristive property. Compared to other emerging switch technologies based on MEMS, RRAM, and phase-change memory (PCM); MoS₂ switches show superior sub-nanosecond pulse switching, low power consumption, and high data-rate operation. We demonstrate eye-diagram and constellation diagram with various modulation methods and remarkable data transmission rate up to 100 Gbit/s in a non-volatile RF switch. Notably, the operating frequencies are about 10× higher than previous reports on RF switches. This monolayer RF switch is expected to enable analog components for next-generation 6G communication and connectivity front-end systems.Lire moins >
Lire la suite >High performance non-volatile analog switches based on monolayer MoS₂ are realized up to 480 GHz, covering the sixth-generation (6G) communication band. Due to its robust layered structure, crystalline MoS₂ enables low insertion loss and high isolation radio-frequency (RF) switch that utilizes its memristive property. Compared to other emerging switch technologies based on MEMS, RRAM, and phase-change memory (PCM); MoS₂ switches show superior sub-nanosecond pulse switching, low power consumption, and high data-rate operation. We demonstrate eye-diagram and constellation diagram with various modulation methods and remarkable data transmission rate up to 100 Gbit/s in a non-volatile RF switch. Notably, the operating frequencies are about 10× higher than previous reports on RF switches. This monolayer RF switch is expected to enable analog components for next-generation 6G communication and connectivity front-end systems.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Source :