Machine learning portfolios with equal ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market
Auteur(s) :
Titre de la revue :
Emerging Markets Review
Pagination :
100891
Éditeur :
Elsevier
Date de publication :
2022-06
ISSN :
1566-0141
Mot(s)-clé(s) en anglais :
Emerging markets
Machine learning
Stock market prediction
Portfolio optimization
Equal risk contribution
Risk parity
Machine learning
Stock market prediction
Portfolio optimization
Equal risk contribution
Risk parity
Discipline(s) HAL :
Sciences de l'Homme et Société/Gestion et management
Résumé en anglais : [en]
We investigate the use of machine learning (ML) to forecast stock returns in the Brazilian market using a rich proprietary dataset. While ML portfolios can easily outperform the local market, the performance of long-short ...
Lire la suite >We investigate the use of machine learning (ML) to forecast stock returns in the Brazilian market using a rich proprietary dataset. While ML portfolios can easily outperform the local market, the performance of long-short strategies using ML is hampered by the high volatility of the short portfolios. We show that an Equal Risk Contribution (ERC) approach significantly improves risk-adjusted returns. We further develop an ERC approach that combines multiple long-short strategies obtained with ML models, equalizing risk contributions across ML models, which outperforms, on a risk-adjusted basis, all individual ML long-short strategies, as well as alternative combinations of ML strategies.Lire moins >
Lire la suite >We investigate the use of machine learning (ML) to forecast stock returns in the Brazilian market using a rich proprietary dataset. While ML portfolios can easily outperform the local market, the performance of long-short strategies using ML is hampered by the high volatility of the short portfolios. We show that an Equal Risk Contribution (ERC) approach significantly improves risk-adjusted returns. We further develop an ERC approach that combines multiple long-short strategies obtained with ML models, equalizing risk contributions across ML models, which outperforms, on a risk-adjusted basis, all individual ML long-short strategies, as well as alternative combinations of ML strategies.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- S1566014122000085.pdf
- Accès libre
- Accéder au document