Parallel Bayesian Optimization for Optimal ...
Type de document :
Communication dans un congrès avec actes
Titre :
Parallel Bayesian Optimization for Optimal Scheduling of Underground Pumped Hydro-Energy Storage Systems
Auteur(s) :
Gobert, Maxime [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Faculté polytechnique de Mons
Gmys, Jan [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Inria Lille - Nord Europe
Toubeau, Jean-François [Auteur]
Université de Mons / University of Mons [UMONS]
Melab, Nouredine [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Inria Lille - Nord Europe
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Tuyttens, Daniel [Auteur]
Université de Mons / University of Mons [UMONS]
Vallée, François [Auteur]
Université de Mons / University of Mons [UMONS]
Optimisation de grande taille et calcul large échelle [BONUS]
Faculté polytechnique de Mons
Gmys, Jan [Auteur]

Optimisation de grande taille et calcul large échelle [BONUS]
Inria Lille - Nord Europe
Toubeau, Jean-François [Auteur]
Université de Mons / University of Mons [UMONS]
Melab, Nouredine [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Inria Lille - Nord Europe
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Tuyttens, Daniel [Auteur]
Université de Mons / University of Mons [UMONS]
Vallée, François [Auteur]
Université de Mons / University of Mons [UMONS]
Titre de la manifestation scientifique :
IPDPSw PDCO - Parallel / Distributed Combinatorics and Optimization
Ville :
Lyon (remote)
Pays :
France
Date de début de la manifestation scientifique :
2022-05-27
Titre de l’ouvrage :
IEEE Xplore
Date de publication :
2022-08-01
Mot(s)-clé(s) en anglais :
Bayesian Optimization
Gaussian Process
Batch-based Parallelism
Optimization
Electrical Engineering
Gaussian Process
Batch-based Parallelism
Optimization
Electrical Engineering
Discipline(s) HAL :
Computer Science [cs]/Operations Research [math.OC]
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
Sciences de l'ingénieur [physics]
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Underground Pumped Hydro-Energy Storage stations are sustainable options to enhance storage capacity and thus the flexibility of energy systems. Efficient management of such units requires high-performance optimization ...
Lire la suite >Underground Pumped Hydro-Energy Storage stations are sustainable options to enhance storage capacity and thus the flexibility of energy systems. Efficient management of such units requires high-performance optimization algorithms able to find solutions in a very restricted timing to comply with the responsive energy markets. In this context, parallel computing offers a valuable solution to ensure appropriate decisions that maximize the profit of the station operator, while guaranteeing the safety of the energy network. This study investigates the use of three existing algorithms in Parallel Bayesian Optimization, namely q-EGO, BSP-EGO and TuRBO. The three algorithms have different inherent behaviors in terms of parallel potential and, even though TuRBO scales better, q-EGO remains the best choice regarding the final outcomes for all investigated batch sizes and manages to get up to 5 times more profits than other approaches.Lire moins >
Lire la suite >Underground Pumped Hydro-Energy Storage stations are sustainable options to enhance storage capacity and thus the flexibility of energy systems. Efficient management of such units requires high-performance optimization algorithms able to find solutions in a very restricted timing to comply with the responsive energy markets. In this context, parallel computing offers a valuable solution to ensure appropriate decisions that maximize the profit of the station operator, while guaranteeing the safety of the energy network. This study investigates the use of three existing algorithms in Parallel Bayesian Optimization, namely q-EGO, BSP-EGO and TuRBO. The three algorithms have different inherent behaviors in terms of parallel potential and, even though TuRBO scales better, q-EGO remains the best choice regarding the final outcomes for all investigated batch sizes and manages to get up to 5 times more profits than other approaches.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03701671/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03701671/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03701671/document
- Accès libre
- Accéder au document
- Gobert_IPDPS_PDCO.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Gobert_IPDPS_PDCO.pdf
- Accès libre
- Accéder au document