• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parallel Bayesian Optimization for Optimal ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Parallel Bayesian Optimization for Optimal Scheduling of Underground Pumped Hydro-Energy Storage Systems
Author(s) :
Gobert, Maxime [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Gmys, Jan [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Inria Lille - Nord Europe
Toubeau, Jean-François [Auteur]
University of Mons [Belgium] [UMONS]
Melab, Nouredine [Auteur] refId
Optimisation de grande taille et calcul large échelle [BONUS]
Inria Lille - Nord Europe
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Tuyttens, Daniel [Auteur]
University of Mons [Belgium] [UMONS]
Vallée, François [Auteur]
University of Mons [Belgium] [UMONS]
Conference title :
IPDPSw PDCO - Parallel / Distributed Combinatorics and Optimization
City :
Lyon (remote)
Country :
France
Start date of the conference :
2022-05-27
English keyword(s) :
Bayesian Optimization
Gaussian Process
Batch-based Parallelism
Optimization
Electrical Engineering
HAL domain(s) :
Informatique [cs]/Recherche opérationnelle [cs.RO]
Sciences de l'ingénieur [physics]
Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
English abstract : [en]
Underground Pumped Hydro-Energy Storage stations are sustainable options to enhance storage capacity and thus the flexibility of energy systems. Efficient management of such units requires high-performance optimization ...
Show more >
Underground Pumped Hydro-Energy Storage stations are sustainable options to enhance storage capacity and thus the flexibility of energy systems. Efficient management of such units requires high-performance optimization algorithms able to find solutions in a very restricted timing to comply with the responsive energy markets. In this context, parallel computing offers a valuable solution to ensure appropriate decisions that maximize the profit of the station operator, while guaranteeing the safety of the energy network. This study investigates the use of three existing algorithms in Parallel Bayesian Optimization, namely q-EGO, BSP-EGO and TuRBO. The three algorithms have different inherent behaviors in terms of parallel potential and, even though TuRBO scales better, q-EGO remains the best choice regarding the final outcomes for all investigated batch sizes and manages to get up to 5 times more profits than other approaches.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03701671/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03701671/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.archives-ouvertes.fr/hal-03701671/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017