Limit cycle analysis of a class of hybrid ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
URL permanente :
Titre :
Limit cycle analysis of a class of hybrid gene regulatory networks
Auteur(s) :
Sun, Honglu [Auteur]
NANTES UNIVERSITÉ - École Centrale de Nantes [Nantes Univ - ECN]
Folschette, Maxime [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Morgan, Magnin [Auteur]
NANTES UNIVERSITÉ - École Centrale de Nantes [Nantes Univ - ECN]
NANTES UNIVERSITÉ - École Centrale de Nantes [Nantes Univ - ECN]
Folschette, Maxime [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Morgan, Magnin [Auteur]
NANTES UNIVERSITÉ - École Centrale de Nantes [Nantes Univ - ECN]
Titre de la manifestation scientifique :
20th International Conference on Computational Methods in Systems Biology (CMSB 2022)
Ville :
Bucharest
Pays :
Roumanie
Date de début de la manifestation scientifique :
2022-09-14
Mot(s)-clé(s) en anglais :
Hybrid modeling
Celerity
Transition matrix
Limit cycle
Gene regulatory networks
Poincaré map
Celerity
Transition matrix
Limit cycle
Gene regulatory networks
Poincaré map
Discipline(s) HAL :
Informatique [cs]/Bio-informatique [q-bio.QM]
Résumé en anglais : [en]
Many gene regulatory networks have periodic behavior, for instance the cell cycle or the circadian clock. Therefore, the study of formal methods to analyze limit cycles in mathematical models of gene regulatory networks ...
Lire la suite >Many gene regulatory networks have periodic behavior, for instance the cell cycle or the circadian clock. Therefore, the study of formal methods to analyze limit cycles in mathematical models of gene regulatory networks is of interest. In this work, we study a pre-existing hybrid modeling framework (HGRN) which extends René Thomas' widespread discrete modeling. We propose a new formal method to nd all limit cycles that are simple and deterministic, and analyze their stability, that is, the ability of the model to converge back to the cycle after a small perturbation. Up to now, only limit cycles in two dimensions (with two genes) have been studied; our work lls this gap by proposing a generic approach applicable in higher dimensions. For this, the hybrid states are abstracted to consider only their borders, in order to enumerate all simple abstract cycles containing possible concrete trajectories. Then, a Poincaré map is used, based on the notion of transition matrix of the concrete continuous dynamics inside these abstract paths. We successfully applied this method on existing models: three HGRNs of negative feedback loops with 3 components, and a HGRN of the cell cycle with 5 components.Lire moins >
Lire la suite >Many gene regulatory networks have periodic behavior, for instance the cell cycle or the circadian clock. Therefore, the study of formal methods to analyze limit cycles in mathematical models of gene regulatory networks is of interest. In this work, we study a pre-existing hybrid modeling framework (HGRN) which extends René Thomas' widespread discrete modeling. We propose a new formal method to nd all limit cycles that are simple and deterministic, and analyze their stability, that is, the ability of the model to converge back to the cycle after a small perturbation. Up to now, only limit cycles in two dimensions (with two genes) have been studied; our work lls this gap by proposing a generic approach applicable in higher dimensions. For this, the hybrid states are abstracted to consider only their borders, in order to enumerate all simple abstract cycles containing possible concrete trajectories. Then, a Poincaré map is used, based on the notion of transition matrix of the concrete continuous dynamics inside these abstract paths. We successfully applied this method on existing models: three HGRNs of negative feedback loops with 3 components, and a HGRN of the cell cycle with 5 components.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Date de dépôt :
2022-07-01T02:32:53Z
Fichiers
- https://hal.archives-ouvertes.fr/hal-03700025/document
- Accès libre
- Accéder au document