A micro-mechanical constitutive model for ...
Document type :
Article dans une revue scientifique
Permalink :
Title :
A micro-mechanical constitutive model for heterogeneous rocks with non-associated plastic matrix as implicit standard materials
Author(s) :
Zhao, Lun-Yang [Auteur]
Hohai University
Laboratoire de Mécanique Multiphysique Multiéchelle [LaMcube]
Shao, Jian-Fu [Auteur]
Laboratoire de Mécanique, Multiphysique, Multiéchelle - UMR 9013 [LaMcube]
Key Laboratory of Applied Statistics under Ministry of Education [KLASMOE]
Lai, Yuan-Ming [Auteur]
South China University of Technology [Guangzhou] [SCUT]
Zhu, Qi-Zhi [Auteur]
Hohai University
Colliat, Jean-Baptiste [Auteur]
Laboratoire de Mécanique, Multi-physique, Multi-échelle (LaMcube) - UMR 9013
Shao, Jian-Fu [Auteur]
Hohai University
Laboratoire de Mécanique Multiphysique Multiéchelle [LaMcube]
Shao, Jian-Fu [Auteur]
Laboratoire de Mécanique, Multiphysique, Multiéchelle - UMR 9013 [LaMcube]
Key Laboratory of Applied Statistics under Ministry of Education [KLASMOE]
Lai, Yuan-Ming [Auteur]
South China University of Technology [Guangzhou] [SCUT]
Zhu, Qi-Zhi [Auteur]
Hohai University
Colliat, Jean-Baptiste [Auteur]

Laboratoire de Mécanique, Multi-physique, Multi-échelle (LaMcube) - UMR 9013
Shao, Jian-Fu [Auteur]
Journal title :
Computers and Geotechnics
Abbreviated title :
Computers and Geotechnics
Volume number :
133
Pages :
104026
Publisher :
Elsevier BV
Publication date :
2021-05
ISSN :
0266-352X
HAL domain(s) :
Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]
English abstract : [en]
In this work, we shall propose a new micro-mechanical constitutive model for the estimation of effective elastic-plastic behaviors of heterogeneous rocks. A bi-potential based incremental variational (BIV) approach is ...
Show more >In this work, we shall propose a new micro-mechanical constitutive model for the estimation of effective elastic-plastic behaviors of heterogeneous rocks. A bi-potential based incremental variational (BIV) approach is developed in order to take into account non-uniform local strain fields of constituents. The studied materials are composed of a non-associated and pressure sensitive plastic matrix, elastic inclusions and/or voids. For clarity, the local behavior of matrix is first described by an elastic perfectly-plastic model. Based on the bi-potential theory to dealing with non-associated plastic flow, the solid matrix is considered as pertaining to implicit standard materials (ISMs). The effective incremental bi-potential and macroscopic stress tensor are then estimated through an extension of the incremental variational method initially established for generalized standard materials(GSMs). The accuracy of the BIV model is verified by comparing the model’s predictions with the reference results obtained from direct finite element simulations. Furthermore, by assuming that the general formulation obtained for the perfectly plastic matrix remains valid for each loading increment, the BIV model is extended to considering that the solid matrix exhibits an isotropic hardening by using an explicit algorithm. The accuracy of the extended BIV model is also validated by a series of comparisons with the reference solutions obtained by direct finite element simulations for both inclusion-reinforced composites and porous materials. Both local and macroscopic responses are compared. As an example of application, the extended BIV model is finally applied to estimating the mechanical responses of typical claystone and sandstone under different loading paths.Show less >
Show more >In this work, we shall propose a new micro-mechanical constitutive model for the estimation of effective elastic-plastic behaviors of heterogeneous rocks. A bi-potential based incremental variational (BIV) approach is developed in order to take into account non-uniform local strain fields of constituents. The studied materials are composed of a non-associated and pressure sensitive plastic matrix, elastic inclusions and/or voids. For clarity, the local behavior of matrix is first described by an elastic perfectly-plastic model. Based on the bi-potential theory to dealing with non-associated plastic flow, the solid matrix is considered as pertaining to implicit standard materials (ISMs). The effective incremental bi-potential and macroscopic stress tensor are then estimated through an extension of the incremental variational method initially established for generalized standard materials(GSMs). The accuracy of the BIV model is verified by comparing the model’s predictions with the reference results obtained from direct finite element simulations. Furthermore, by assuming that the general formulation obtained for the perfectly plastic matrix remains valid for each loading increment, the BIV model is extended to considering that the solid matrix exhibits an isotropic hardening by using an explicit algorithm. The accuracy of the extended BIV model is also validated by a series of comparisons with the reference solutions obtained by direct finite element simulations for both inclusion-reinforced composites and porous materials. Both local and macroscopic responses are compared. As an example of application, the extended BIV model is finally applied to estimating the mechanical responses of typical claystone and sandstone under different loading paths.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
Centrale Lille
CNRS
Centrale Lille
Submission date :
2022-07-05T07:40:51Z
2022-07-05T12:52:12Z
2022-07-05T12:52:12Z